BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 7959448)

  • 21. Predicting blood β-hydroxybutyrate using milk Fourier transform infrared spectrum, milk composition, and producer-reported variables with multiple linear regression, partial least squares regression, and artificial neural network.
    Pralle RS; Weigel KW; White HM
    J Dairy Sci; 2018 May; 101(5):4378-4387. PubMed ID: 29477523
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Prediction of Oral Acute Toxicity of Organophosphates Using QSAR Methods.
    Kianpour M; Mohammadinasab E; Isfahani TM
    Curr Comput Aided Drug Des; 2021; 17(1):38-56. PubMed ID: 31880265
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Relative sensitivity of Daphnia magna and Brachionus calyciflorus to five pesticides.
    Ferrando MD; Andreu-Moliner E; Fernández-Casalderrey A
    J Environ Sci Health B; 1992 Oct; 27(5):511-22. PubMed ID: 1383312
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structure-toxicity modeling of pesticides to honey bees.
    Devillers J; Pham-Delègue MH; Decourtye A; Budzinski H; Cluzeau S; Maurin G
    SAR QSAR Environ Res; 2002 Dec; 13(7-8):641-8. PubMed ID: 12570042
    [TBL] [Abstract][Full Text] [Related]  

  • 25. QSAR model for predicting pesticide aquatic toxicity.
    Mazzatorta P; Smiesko M; Lo Piparo E; Benfenati E
    J Chem Inf Model; 2005; 45(6):1767-74. PubMed ID: 16309283
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Linear versus nonlinear QSAR modeling of the toxicity of phenol derivatives to Tetrahymena pyriformis.
    Devillers J
    SAR QSAR Environ Res; 2004 Aug; 15(4):237-49. PubMed ID: 15370415
    [TBL] [Abstract][Full Text] [Related]  

  • 27. QSAR modeling of toxicity of diverse organic chemicals to Daphnia magna using 2D and 3D descriptors.
    Kar S; Roy K
    J Hazard Mater; 2010 May; 177(1-3):344-51. PubMed ID: 20045248
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In silico modelling of pesticide aquatic toxicity.
    Agatonovic-Kustrin S; Morton DW; Razic S
    Comb Chem High Throughput Screen; 2014; 17(9):808-18. PubMed ID: 25335880
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Predicting acute aquatic toxicity of structurally diverse chemicals in fish using artificial intelligence approaches.
    Singh KP; Gupta S; Rai P
    Ecotoxicol Environ Saf; 2013 Sep; 95():221-33. PubMed ID: 23764236
    [TBL] [Abstract][Full Text] [Related]  

  • 30. QSRR using evolved artificial neural network for 52 common pharmaceuticals and drugs of abuse in hair from UPLC-TOF-MS.
    Noorizadeh H; Farmany A; Narimani H; Noorizadeh M
    Drug Test Anal; 2013 May; 5(5):320-4. PubMed ID: 21905247
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Retention modelling of polychlorinated biphenyls in comprehensive two-dimensional gas chromatography.
    D'Archivio AA; Incani A; Ruggieri F
    Anal Bioanal Chem; 2011 Jan; 399(2):903-13. PubMed ID: 20972553
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A general QSAR model for predicting the acute toxicity of pesticides to Oncorhynchus mykiss.
    Devillers J; Flatin J
    SAR QSAR Environ Res; 2000; 11(1):25-43. PubMed ID: 10768404
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Acute toxicity of several pesticides to rotifer (Brachionus calyciflorus).
    Fernández-Casalderry A; Ferrando MD; Andreu-Moliner E
    Bull Environ Contam Toxicol; 1992 Jan; 48(1):14-7. PubMed ID: 1581672
    [No Abstract]   [Full Text] [Related]  

  • 34. Development of an in vitro test battery for the estimation of acute human systemic toxicity: An outline of the EDIT project. Evaluation-guided Development of New In Vitro Test Batteries.
    Clemedson C; Nordin-Andersson M; Bjerregaard HF; Clausen J; Forsby A; Gustafsson H; Hansson U; Isomaa B; Jørgensen C; Kolman A; Kotova N; Krause G; Kristen U; Kurppa K; Romert L; Scheers E
    Altern Lab Anim; 2002; 30(3):313-21. PubMed ID: 12106010
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Prediction of cytotoxicity data (CC(50)) of anti-HIV 5-phenyl-1-phenylamino-1H-imidazole derivatives by artificial neural network trained with Levenberg-Marquardt algorithm.
    Arab Chamjangali M; Beglari M; Bagherian G
    J Mol Graph Model; 2007 Jul; 26(1):360-7. PubMed ID: 17350867
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Determination of partitioning of drug molecules using immobilized liposome chromatography and chemometrics methods.
    Noorizadeh H; Farmany A
    Drug Test Anal; 2012 Feb; 4(2):151-7. PubMed ID: 21438160
    [TBL] [Abstract][Full Text] [Related]  

  • 37. QSTR with extended topochemical atom (ETA) indices. 12. QSAR for the toxicity of diverse aromatic compounds to Tetrahymena pyriformis using chemometric tools.
    Roy K; Ghosh G
    Chemosphere; 2009 Nov; 77(7):999-1009. PubMed ID: 19709717
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Artemia salina acute immobilization test: a possible tool for aquatic ecotoxicity assessment.
    Kalčíková G; Zagorc-Končan J; Zgajnar Gotvajn A
    Water Sci Technol; 2012; 66(4):903-8. PubMed ID: 22766884
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Prediction of gas chromatography/electron capture detector retention times of chlorinated pesticides, herbicides, and organohalides by multivariate chemometrics methods.
    Ghasemi J; Asadpour S; Abdolmaleki A
    Anal Chim Acta; 2007 Apr; 588(2):200-6. PubMed ID: 17386811
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of a partial least squares-artificial neural network (PLS-ANN) hybrid model for the prediction of consumer liking scores of ready-to-drink green tea beverages.
    Yu P; Low MY; Zhou W
    Food Res Int; 2018 Jan; 103():68-75. PubMed ID: 29389644
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.