These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
74 related articles for article (PubMed ID: 7960032)
1. Microglial tyrosine phosphorylation systems in normal and degenerating brain. Karp HL; Tillotson ML; Soria J; Reich C; Wood JG Glia; 1994 Jul; 11(3):284-90. PubMed ID: 7960032 [TBL] [Abstract][Full Text] [Related]
2. Regulation of microglial tyrosine phosphorylation in response to neuronal injury. Griffith R; Soria J; Wood JG Exp Neurol; 2000 Jan; 161(1):297-305. PubMed ID: 10683295 [TBL] [Abstract][Full Text] [Related]
3. Phosphotyrosine antibodies specifically label ameboid microglia in vitro and ramified microglia in vivo. Tillotson ML; Wood JG Glia; 1989; 2(6):412-9. PubMed ID: 2480334 [TBL] [Abstract][Full Text] [Related]
4. Differential expression of protein tyrosine kinase genes during microglial activation. Krady JK; Basu A; Levison SW; Milner RJ Glia; 2002 Oct; 40(1):11-24. PubMed ID: 12237840 [TBL] [Abstract][Full Text] [Related]
5. Microglial response to transient focal cerebral ischemia: an immunocytochemical study on the rat cerebral cortex using anti-phosphotyrosine antibody. Korematsu K; Goto S; Nagahiro S; Ushio Y J Cereb Blood Flow Metab; 1994 Sep; 14(5):825-30. PubMed ID: 7520452 [TBL] [Abstract][Full Text] [Related]
6. Change of phosphotyrosine immunoreactivity on microglia in the rat substantia nigra following striatal ischemic injury. Korematsu K; Goto S; Nagahiro S; Inoue N; Oyama T; Yamada K; Ushio Y Glia; 1995 Feb; 13(2):147-53. PubMed ID: 7544325 [TBL] [Abstract][Full Text] [Related]
7. Neuroprotective effects of naloxone against light-induced photoreceptor degeneration through inhibiting retinal microglial activation. Ni YQ; Xu GZ; Hu WZ; Shi L; Qin YW; Da CD Invest Ophthalmol Vis Sci; 2008 Jun; 49(6):2589-98. PubMed ID: 18515588 [TBL] [Abstract][Full Text] [Related]
8. Expression of glucose transporter 5 by microglia in human gliomas. Sasaki A; Yamaguchi H; Horikoshi Y; Tanaka G; Nakazato Y Neuropathol Appl Neurobiol; 2004 Oct; 30(5):447-55. PubMed ID: 15488021 [TBL] [Abstract][Full Text] [Related]
9. Prothrombin kringle-2-induced oxidative stress contributes to the death of cortical neurons in vivo and in vitro: role of microglial NADPH oxidase. Won SY; Choi SH; Jin BK J Neuroimmunol; 2009 Sep; 214(1-2):83-92. PubMed ID: 19660816 [TBL] [Abstract][Full Text] [Related]
10. Phosphorylation of signal transducer and activator of transcription-3 (Stat3) after focal cerebral ischemia in rats. Suzuki S; Tanaka K; Nogawa S; Dembo T; Kosakai A; Fukuuchi Y Exp Neurol; 2001 Jul; 170(1):63-71. PubMed ID: 11421584 [TBL] [Abstract][Full Text] [Related]
11. The protein tyrosine phosphatase, Shp2, is required for the complete activation of the RAS/MAPK pathway by brain-derived neurotrophic factor. Easton JB; Royer AR; Middlemas DS J Neurochem; 2006 May; 97(3):834-45. PubMed ID: 16573649 [TBL] [Abstract][Full Text] [Related]
12. ERK1/2 and p38 mitogen-activated protein kinase mediate iNOS-induced spinal neuron degeneration after acute traumatic spinal cord injury. Xu Z; Wang BR; Wang X; Kuang F; Duan XL; Jiao XY; Ju G Life Sci; 2006 Oct; 79(20):1895-905. PubMed ID: 16978658 [TBL] [Abstract][Full Text] [Related]
13. Glial phosphorylated p38 MAP kinase mediates pain in a rat model of lumbar disc herniation and induces motor dysfunction in a rat model of lumbar spinal canal stenosis. Ito T; Ohtori S; Inoue G; Koshi T; Doya H; Ozawa T; Saito T; Moriya H; Takahashi K Spine (Phila Pa 1976); 2007 Jan; 32(2):159-67. PubMed ID: 17224809 [TBL] [Abstract][Full Text] [Related]
14. Microglia and the early phase of immune surveillance in the axotomized facial motor nucleus: impaired microglial activation and lymphocyte recruitment but no effect on neuronal survival or axonal regeneration in macrophage-colony stimulating factor-deficient mice. Kalla R; Liu Z; Xu S; Koppius A; Imai Y; Kloss CU; Kohsaka S; Gschwendtner A; Möller JC; Werner A; Raivich G J Comp Neurol; 2001 Jul; 436(2):182-201. PubMed ID: 11438923 [TBL] [Abstract][Full Text] [Related]
15. Relationship between microglial activation and dopaminergic neuronal loss in the substantia nigra: a time course study in a 6-hydroxydopamine model of Parkinson's disease. Marinova-Mutafchieva L; Sadeghian M; Broom L; Davis JB; Medhurst AD; Dexter DT J Neurochem; 2009 Aug; 110(3):966-75. PubMed ID: 19549006 [TBL] [Abstract][Full Text] [Related]
16. erbB family receptor expression and growth regulation in a newly isolated human breast cancer cell line. Ethier SP; Kokeny KE; Ridings JW; Dilts CA Cancer Res; 1996 Feb; 56(4):899-907. PubMed ID: 8631031 [TBL] [Abstract][Full Text] [Related]
17. Identification of sequential events and factors associated with microglial activation, migration, and cytotoxicity in retinal degeneration in rd mice. Zeng HY; Zhu XA; Zhang C; Yang LP; Wu LM; Tso MO Invest Ophthalmol Vis Sci; 2005 Aug; 46(8):2992-9. PubMed ID: 16043876 [TBL] [Abstract][Full Text] [Related]
18. Suppressive effect of endogenous regucalcin on protein tyrosine phosphatase activity in the nucleus of rat brain: attenuation with increasing age. Tobisawa M; Yamaguchi M Int J Mol Med; 2003 Feb; 11(2):205-10. PubMed ID: 12525879 [TBL] [Abstract][Full Text] [Related]
19. Temporal profile of microglial response following transient (2 h) middle cerebral artery occlusion. Zhang Z; Chopp M; Powers C Brain Res; 1997 Jan; 744(2):189-98. PubMed ID: 9027378 [TBL] [Abstract][Full Text] [Related]
20. Multiple in vivo phosphorylated tyrosine phosphatase SHP-2 engages binding to Grb2 via tyrosine 584. Vogel W; Ullrich A Cell Growth Differ; 1996 Dec; 7(12):1589-97. PubMed ID: 8959326 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]