These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 7960782)

  • 1. The use of a high-purity germanium detector for routine measurements of 125I in radiation workers.
    Kopp P; Bergmann H; Havlik E; Aiginger H; Unfried E; Riedlmayer L
    Health Phys; 1994 Dec; 67(6):616-20. PubMed ID: 7960782
    [TBL] [Abstract][Full Text] [Related]  

  • 2. UNCERTAINTY OF MEASUREMENT IN THE RESPONSE TEST OF A THYROID MONITOR.
    Yunoki A
    Radiat Prot Dosimetry; 2019 Oct; 184(3-4):531-534. PubMed ID: 31089717
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thyroidal 125I monitoring system using an NaI (Tl) survey meter.
    Nishizawa K; Maekoshi H
    Health Phys; 1990 Feb; 58(2):165-9. PubMed ID: 2298572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of counting efficiencies of a portable NaI detector using Monte Carlo simulation for thyroid measurement following nuclear accidents.
    Ha WH; Kim JK; Jin YW
    J Radiol Prot; 2017 Sep; 37(3):635-641. PubMed ID: 28474600
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance assessment and uncertainty evaluation of a portable NaI-based detection system used for thyroid monitoring.
    Bento J; Martins B; Teles P; Neves M; Colarinha P; Alves F; Teixeira N; Vaz P; Zankl M
    Radiat Prot Dosimetry; 2012 Aug; 151(2):252-61. PubMed ID: 22345216
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monte-Carlo simulation of uncertainty in the estimation of 125I in the thyroid.
    Bhati S; Patni HK
    Radiat Prot Dosimetry; 2009 Aug; 136(1):23-9. PubMed ID: 19689965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of uncertainties associated to the in vivo measurement of iodine-131 in the thyroid.
    Dantas BM; Lima FF; Dantas AL; Lucena EA; Gontijo RM; Carvalho CB; Hazin C
    Appl Radiat Isot; 2016 Jul; 113():1-4. PubMed ID: 27108067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. METHODOLOGY AT CIEMAT WHOLE BODY COUNTER FOR IN VIVO MONITORING OF RADIOIODINE IN THE THYROID OF EXPOSED POPULATION IN CASE OF NUCLEAR EMERGENCY.
    Pérez López B; Navarro JF; López MA
    Radiat Prot Dosimetry; 2018 Dec; 182(2):171-176. PubMed ID: 29584908
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In-vivo thyroid 125I monitoring method using imaging plate.
    Nishizawa K; Saze T; Etho M; Murabayashi K; Iwai S
    Health Phys; 2001 Mar; 80(3):235-41. PubMed ID: 11219535
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Counting efficiency of whole-body monitoring system using BOMAB and ANSI/IAEA thyroid phantom due to internal contamination of 131I.
    Ghare VP; Patni HK; Akar DK; Rao DD
    Radiat Prot Dosimetry; 2014 Dec; 162(3):230-5. PubMed ID: 24179144
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NUMERICAL ASSESSMENT OF 131I DEPOSITED IN THYROID FOR NON-STANDARD SITUATIONS.
    Moraleda M; Gómez-Ros JM
    Radiat Prot Dosimetry; 2016 Sep; 170(1-4):364-8. PubMed ID: 26705352
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Results of a thyroid monitoring survey carried out on workers exposed to 125I in São Paulo, Brazil.
    Bartolini P; Ribela MT; Araujo EA
    Health Phys; 1988 Sep; 55(3):511-5. PubMed ID: 3170204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of the ANSI, RSD, KKH, and BRMD thyroid-neck phantoms for 125I thyroid monitoring.
    Kramer GH; Olender G; Vlahovich S; Hauck BM; Meyerhof DP
    Health Phys; 1996 Mar; 70(3):425-9. PubMed ID: 8609037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Thyroidal 125I monitoring system using a survey meter for 125I].
    Nishizawa K; Maekoshi H
    Radioisotopes; 1989 Apr; 38(4):203-8. PubMed ID: 2740535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New technique using room temperature diodes for the direct assessment of internal contamination by low energy gamma-ray emitters.
    Genicot JL; Alzetta JP
    Appl Radiat Isot; 1997 Mar; 48(3):349-58. PubMed ID: 9116654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative Study of Performance using Five Different Gamma-ray Spectrometers for Thyroid Monitoring under Nuclear Emergency Situations.
    Hosoda M; Iwaoka K; Tokonami S; Tamakuma Y; Shiroma Y; Fukuhara T; Imajyo Y; Taniguchi J; Akata N; Osanai M; Tsujiguchi T; Yamaguchi M; Kashiwakura I
    Health Phys; 2019 Jan; 116(1):81-87. PubMed ID: 30489369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A systematic experimental study of parameters influencing 131-iodine in vivo spectroscopic measurements using age-specific thyroid phantoms.
    Beaumont T; Rimlinger M; Broggio D; Ideias PC; Franck D
    J Radiol Prot; 2018 Jun; 38(2):651-665. PubMed ID: 29576555
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The use of planar high-purity Ge detectors for in vivo measurement of low-energy photon emitters.
    Palmer HE; Rieksts G
    Health Phys; 1984 Oct; 47(4):569-78. PubMed ID: 6511400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement of 131I in the human thyroid gland using a NaI(Tl) scintillation survey meter.
    Tanaka G; Kawamura H
    J Radiat Res; 1978 Mar; 19(1):78-84. PubMed ID: 650629
    [No Abstract]   [Full Text] [Related]  

  • 20. Measurement of 90Sr in contaminated Fukushima soils using liquid scintillation counter.
    Kavasi N; Sahoo SK; Arae H; Yoshida S; Sorimachi A; Tokonami S
    Radiat Prot Dosimetry; 2015 Nov; 167(1-3):376-9. PubMed ID: 25956786
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.