These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

65 related articles for article (PubMed ID: 7960790)

  • 21. The influence of water potassium concentration on 137Cs excretion from fish.
    Nasvit OI
    Health Phys; 1996 Jul; 71(1):34-6. PubMed ID: 8655326
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Uptake and elimination of 137Cs by climbing perch (Anabus testudineus).
    Malek MA
    Health Phys; 1999 Dec; 77(6):719-23. PubMed ID: 10568552
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Mathematical modelling of the metabolism of the radionuclide cesium-137. The calculation of the population risk].
    Mamaeva EF; Mamaev VB; Kuznetsov IA; Burlakova EB
    Izv Akad Nauk Ser Biol; 1994; (4):627-36. PubMed ID: 7987202
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ecological half-lives of 90Sr and 137Cs in terrestrial and aquatic ecosystems.
    Pröhl G; Ehlken S; Fiedler I; Kirchner G; Klemt E; Zibold G
    J Environ Radioact; 2006; 91(1-2):41-72. PubMed ID: 17007973
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Estimation of 137Cs body burden in Japanese II. The biological half-life.
    Uchiyama M
    J Radiat Res; 1978 Sep; 19(3):246-61. PubMed ID: 739445
    [No Abstract]   [Full Text] [Related]  

  • 26. Application of potassium chloride to a Chernobyl-contaminated lake: modelling the dynamics of radiocaesium in an aquatic ecosystem and decontamination of fish.
    Smith JT; Kudelsky AV; Ryabov IN; Hadderingh RH; Bulgakov AA
    Sci Total Environ; 2003 Apr; 305(1-3):217-27. PubMed ID: 12670770
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modelling of long-term behaviour of caesium and strontium radionuclides in the Arctic environment and human exposure.
    Golikov V; Logacheva I; Bruk G; Shutov V; Balonov M; Strand P; Borghuis S; Howard B; Wright S
    J Environ Radioact; 2004; 74(1-3):159-69. PubMed ID: 15063545
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transfer of 137Cs from Chernobyl debris and nuclear weapons fallout to different Swedish population groups.
    Rääf CL; Hubbard L; Falk R; Agren G; Vesanen R
    Sci Total Environ; 2006 Aug; 367(1):324-40. PubMed ID: 16504249
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Health impacts of large releases of radionuclides. Physical transport and chemical and biological processes in agricultural systems.
    Voigt G
    Ciba Found Symp; 1997; 203():3-16; discussion 16-20, 44-5. PubMed ID: 9339307
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Studies on the current 137Cs body burden of children in Belarus--can the dose be further reduced?
    Hill P; Schläger M; Vogel V; Hille R; Nesterenko AV; Nesterenko VB
    Radiat Prot Dosimetry; 2007; 125(1-4):523-6. PubMed ID: 17314090
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cesium-137 in grass from Chernobyl fallout.
    Papastefanou C; Manolopoulou M; Stoulos S; Ioannidou A; Gerasopoulos E
    J Environ Radioact; 2005; 83(2):253-7. PubMed ID: 15923066
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Investigation of food contamination since the Chernobyl fallout in Austria.
    Schwaiger M; Mueck K; Benesch T; Feichtinger J; Hrnecek E; Lovranich E
    Appl Radiat Isot; 2004; 61(2-3):357-60. PubMed ID: 15177371
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Levels and trends of radioactive contaminants in the Greenland environment.
    Dahlgaard H; Eriksson M; Nielsen SP; Joensen HP
    Sci Total Environ; 2004 Sep; 331(1-3):53-67. PubMed ID: 15325141
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Radiocaesium contamination of beef in Croatia after the Chernobyl accident.
    Franić Z; Marović G; Mestrović J
    Food Chem Toxicol; 2008 Jun; 46(6):2096-102. PubMed ID: 18334277
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Relationship between turnover of cesium-137 and dietary potassium content in potassium-restricted mice.
    Sato I; Matsusaka N; Tsuda S; Kobayashi H; Nishimura Y
    Radiat Res; 1997 Jul; 148(1):98-100. PubMed ID: 9216623
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mosses and some mushroom species as bioindicators of radiocaesium contamination and risk assessment.
    Marović G; Franić Z; Sencar J; Bituh T; Vugrinec O
    Coll Antropol; 2008 Oct; 32 Suppl 2():109-14. PubMed ID: 19138015
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modelling radiocaesium transfer and long-term changes in reindeer.
    Ahman B
    J Environ Radioact; 2007; 98(1-2):153-65. PubMed ID: 17707963
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Letter: A comment on the biological half-life of 137Cs in man.
    Clemente GF
    Health Phys; 1973 Aug; 25(2):200-1. PubMed ID: 4784261
    [No Abstract]   [Full Text] [Related]  

  • 39. Foliar uptake of 134Cs and 85Sr in strawberry as function by leaf age.
    Fortunati P; Brambilla M; Speroni F; Carini F
    J Environ Radioact; 2004; 71(2):187-99. PubMed ID: 14567952
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of radionuclides distributed in the whole body on the thyroid dose estimates obtained from direct thyroid measurements made in Belarus after the Chernobyl accident.
    Ulanovsky A; Drozdovitch V; Bouville A
    Radiat Prot Dosimetry; 2004; 112(3):405-18. PubMed ID: 15494363
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.