These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 7961182)
1. Tuned hair cells for hearing, but tuned basilar membrane for overload protection: evidence from dolphins, bats, and desert rodents. Braun M Hear Res; 1994 Jul; 78(1):98-114. PubMed ID: 7961182 [TBL] [Abstract][Full Text] [Related]
2. Amplification and Suppression of Traveling Waves along the Mouse Organ of Corti: Evidence for Spatial Variation in the Longitudinal Coupling of Outer Hair Cell-Generated Forces. Dewey JB; Applegate BE; Oghalai JS J Neurosci; 2019 Mar; 39(10):1805-1816. PubMed ID: 30651330 [TBL] [Abstract][Full Text] [Related]
3. Electromotile hearing: evidence from basilar membrane motion and otoacoustic emissions. Nuttall AL; Ren T Hear Res; 1995 Dec; 92(1-2):170-7. PubMed ID: 8647740 [TBL] [Abstract][Full Text] [Related]
4. Vibration of the organ of Corti within the cochlear apex in mice. Gao SS; Wang R; Raphael PD; Moayedi Y; Groves AK; Zuo J; Applegate BE; Oghalai JS J Neurophysiol; 2014 Sep; 112(5):1192-204. PubMed ID: 24920025 [TBL] [Abstract][Full Text] [Related]
5. A model of cochlear micromechanics. Fukazawa T Hear Res; 1997 Nov; 113(1-2):182-90. PubMed ID: 9387997 [TBL] [Abstract][Full Text] [Related]
6. Impediment of basilar membrane motion reduces overload protection but not threshold sensitivity: evidence from clinical and experimental hydrops. Braun M Hear Res; 1996 Aug; 97(1-2):1-10. PubMed ID: 8844181 [TBL] [Abstract][Full Text] [Related]
7. Comparative aspects of cochlear functional organization in mammals. Vater M; Kössl M Hear Res; 2011 Mar; 273(1-2):89-99. PubMed ID: 20630478 [TBL] [Abstract][Full Text] [Related]
8. The radial pattern of basilar membrane motion evoked by electric stimulation of the cochlea. Nuttall AL; Guo M; Ren T Hear Res; 1999 May; 131(1-2):39-46. PubMed ID: 10355603 [TBL] [Abstract][Full Text] [Related]
9. Two-Dimensional Cochlear Micromechanics Measured In Vivo Demonstrate Radial Tuning within the Mouse Organ of Corti. Lee HY; Raphael PD; Xia A; Kim J; Grillet N; Applegate BE; Ellerbee Bowden AK; Oghalai JS J Neurosci; 2016 Aug; 36(31):8160-73. PubMed ID: 27488636 [TBL] [Abstract][Full Text] [Related]
13. Consequences of Location-Dependent Organ of Corti Micro-Mechanics. Liu Y; Gracewski SM; Nam JH PLoS One; 2015; 10(8):e0133284. PubMed ID: 26317521 [TBL] [Abstract][Full Text] [Related]
14. Feed-forward and feed-backward amplification model from cochlear cytoarchitecture: an interspecies comparison. Yoon YJ; Steele CR; Puria S Biophys J; 2011 Jan; 100(1):1-10. PubMed ID: 21190651 [TBL] [Abstract][Full Text] [Related]
15. All Three Rows of Outer Hair Cells Are Required for Cochlear Amplification. Murakoshi M; Suzuki S; Wada H Biomed Res Int; 2015; 2015():727434. PubMed ID: 26295049 [TBL] [Abstract][Full Text] [Related]
16. A ratchet mechanism for amplification in low-frequency mammalian hearing. Reichenbach T; Hudspeth AJ Proc Natl Acad Sci U S A; 2010 Mar; 107(11):4973-8. PubMed ID: 20194771 [TBL] [Abstract][Full Text] [Related]
18. Stimulus biasing: a comparison between cochlear hair cell and organ of Corti response patterns. Cheatham MA; Dallos P Hear Res; 1994 May; 75(1-2):103-13. PubMed ID: 8071136 [TBL] [Abstract][Full Text] [Related]
19. Phase of neural excitation relative to basilar membrane motion in the organ of Corti: theoretical considerations. Andoh M; Nakajima C; Wada H J Acoust Soc Am; 2005 Sep; 118(3 Pt 1):1554-65. PubMed ID: 16240816 [TBL] [Abstract][Full Text] [Related]
20. Outer hair cell active force generation in the cochlear environment. Liao Z; Feng S; Popel AS; Brownell WE; Spector AA J Acoust Soc Am; 2007 Oct; 122(4):2215-25. PubMed ID: 17902857 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]