BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 7961719)

  • 21. Subunit 8 of the Saccharomyces cerevisiae cytochrome bc1 complex interacts with succinate-ubiquinone reductase complex.
    Bruel C; Brasseur R; Trumpower BL
    J Bioenerg Biomembr; 1996 Feb; 28(1):59-68. PubMed ID: 8786239
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Succinate-ubiquinone reductase site of the respiratory chain].
    Vinogradov AD
    Biokhimiia; 1986 Dec; 51(12):1944-73. PubMed ID: 3542059
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nonoxidizable ubiquinol derivatives that are suitable for the study of the ubiquinol oxidation site in the cytochrome bc1 complex.
    Zhang L; Li Z; Quinn B; Yu L; Yu CA
    Biochim Biophys Acta; 2002 Dec; 1556(2-3):226-32. PubMed ID: 12460680
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fumarate reductase activity of bovine heart succinate-ubiquinone reductase. New assay system and overall properties of the reaction.
    Grivennikova VG; Gavrikova EV; Timoshin AA; Vinogradov AD
    Biochim Biophys Acta; 1993 Jan; 1140(3):282-92. PubMed ID: 8417779
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Properties of bovine heart mitochondrial cytochrome b560.
    Yu L; Xu JX; Haley PE; Yu CA
    J Biol Chem; 1987 Jan; 262(3):1137-43. PubMed ID: 3027080
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification of ubiquinone-binding proteins in yeast mitochondrial ubiquinol-cytochrome c reductase using an azido-ubiquinone derivative.
    Yu L; Yang FD; Yu CA; Tsai AL; Palmer G
    Biochim Biophys Acta; 1986 Mar; 848(3):305-11. PubMed ID: 3004577
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Malate oxidation by mitochondrial succinate:ubiquinone-reductase].
    Belikova IuO; Kotliar AB
    Biokhimiia; 1988 Apr; 53(4):668-76. PubMed ID: 3395646
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mitochondrial ubiquinol-cytochrome c reductase complex: crystallization and protein: ubiquinone interaction.
    Yu CA; Yu L
    J Bioenerg Biomembr; 1993 Jun; 25(3):259-73. PubMed ID: 8394321
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The participation of primary amino groups of succinate dehydrogenase in the formation of succinate-Q reductase.
    Yu L; Yu CA
    Biochim Biophys Acta; 1981 Sep; 637(2):383-6. PubMed ID: 6794620
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pyridoxal phosphate-induced dissociation of the succinate: ubiquinone reductase.
    Choudhry ZM; Gavrikova EV; Kotlyar AB; Tushurashvili PR; Vinogradov AD
    FEBS Lett; 1985 Mar; 182(1):171-5. PubMed ID: 3972121
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nitric oxide inhibits mitochondrial NADH:ubiquinone reductase activity through peroxynitrite formation.
    Riobó NA; Clementi E; Melani M; Boveris A; Cadenas E; Moncada S; Poderoso JJ
    Biochem J; 2001 Oct; 359(Pt 1):139-45. PubMed ID: 11563977
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of the nonionic detergent Triton X-100 on mitochondrial succinate-oxidizing enzymes.
    Barbero MC; Valpuesta JM; Rial E; Gurtubay JI; Goñi FM; Macarulla JM
    Arch Biochem Biophys; 1984 Feb; 228(2):560-8. PubMed ID: 6320742
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Direct interaction between the internal NADH: ubiquinone oxidoreductase and ubiquinol:cytochrome c oxidoreductase in the reduction of exogenous quinones by yeast mitochondria.
    Beattie DS; Japa S; Howton M; Zhu QS
    Arch Biochem Biophys; 1992 Feb; 292(2):499-505. PubMed ID: 1309974
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dicyclohexylcarbodiimide inhibition of succinate- and ubiquinol-cytochrome c reductase in beef heart mitochondria.
    Degli Esposti M; Parenti-Castelli G; Lenaz G
    Ital J Biochem; 1981; 30(6):453-63. PubMed ID: 6277826
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Myeloperoxidase-mediated inhibition of microbial respiration: damage to Escherichia coli ubiquinol oxidase.
    Rakita RM; Michel BR; Rosen H
    Biochemistry; 1989 Apr; 28(7):3031-6. PubMed ID: 2545243
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Diagnostic value of succinate ubiquinone reductase activity in the identification of patients with mitochondrial DNA depletion.
    Hargreaves P; Rahman S; Guthrie P; Taanman JW; Leonard JV; Land JM; Heales SJ
    J Inherit Metab Dis; 2002 Feb; 25(1):7-16. PubMed ID: 12004863
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interaction between succinate dehydrogenase and ubiquinone-binding protein from succinate-ubiquinone reductase.
    Yu L; Yu CA
    Biochim Biophys Acta; 1980 Nov; 593(1):24-38. PubMed ID: 7426645
    [No Abstract]   [Full Text] [Related]  

  • 38. Studies on the succinate dehydrogenating system. Interaction of the mitochondrial succinate-ubiquinone reductase with pyridoxal phosphate.
    Choudhry ZM; Kotlyar AB; Vinogradov AD
    Biochim Biophys Acta; 1986 Jun; 850(1):131-8. PubMed ID: 3707947
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inhibition of electron transfer in the cytochrome b-c, segment of the mitochondrial respiratory chain by a synthetic analogue of ubiquinone.
    Trumpower BL; Haggerty JG
    J Bioenerg Biomembr; 1980 Aug; 12(3-4):151-64. PubMed ID: 6260766
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A ubiquinone derivative that inhibits mitochondrial cytochrome b-c1 complex but not chloroplast cytochrome b6-f complex activity.
    Gu LQ; Yu L; Yu CA
    J Biol Chem; 1989 Mar; 264(8):4506-12. PubMed ID: 2538447
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.