BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 7961849)

  • 1. Purification and characterization of two forms of I-DmoI, a thermophilic site-specific endonuclease encoded by an archaeal intron.
    Dalgaard JZ; Garrett RA; Belfort M
    J Biol Chem; 1994 Nov; 269(46):28885-92. PubMed ID: 7961849
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A site-specific endonuclease encoded by a typical archaeal intron.
    Dalgaard JZ; Garrett RA; Belfort M
    Proc Natl Acad Sci U S A; 1993 Jun; 90(12):5414-7. PubMed ID: 8390663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structure of the thermostable archaeal intron-encoded endonuclease I-DmoI.
    Silva GH; Dalgaard JZ; Belfort M; Van Roey P
    J Mol Biol; 1999 Mar; 286(4):1123-36. PubMed ID: 10047486
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystallization and preliminary crystallographic analysis of the archaeal intron-encoded endonuclease I-DmoI.
    Dalgaard JZ; Silva GH; Belfort M; Van Roey P
    Acta Crystallogr D Biol Crystallogr; 1998 Nov; 54(Pt 6 Pt 2):1435-6. PubMed ID: 10089530
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mapping metal ions at the catalytic centres of two intron-encoded endonucleases.
    Lykke-Andersen J; Garrett RA; Kjems J
    EMBO J; 1997 Jun; 16(11):3272-81. PubMed ID: 9214642
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Profile of the DNA recognition site of the archaeal homing endonuclease I-DmoI.
    Aagaard C; Awayez MJ; Garrett RA
    Nucleic Acids Res; 1997 Apr; 25(8):1523-30. PubMed ID: 9092657
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA substrate specificity and cleavage kinetics of an archaeal homing-type endonuclease from Pyrobaculum organotrophum.
    Lykke-Andersen J; Thi-Ngoc HP; Garrett RA
    Nucleic Acids Res; 1994 Nov; 22(22):4583-90. PubMed ID: 7984405
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and dynamics of mesophilic variants from the homing endonuclease I-DmoI.
    Alba J; Marcaida MJ; Prieto J; Montoya G; Molina R; D'Abramo M
    J Comput Aided Mol Des; 2017 Dec; 31(12):1063-1072. PubMed ID: 29177929
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of the LAGLIDADG interface of the monomeric homing endonuclease I-DmoI.
    Silva GH; Belfort M
    Nucleic Acids Res; 2004; 32(10):3156-68. PubMed ID: 15190132
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein footprinting approach to mapping DNA binding sites of two archaeal homing enzymes: evidence for a two-domain protein structure.
    Lykke-Andersen J; Garrett RA; Kjems J
    Nucleic Acids Res; 1996 Oct; 24(20):3982-9. PubMed ID: 8918801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An archaeal homing endonuclease I-PogI cleaves at the insertion site of the neighboring intron, which has no nested open reading frame.
    Nakayama H; Morinaga Y; Nomura N; Nunoura T; Sako Y; Uchida A
    FEBS Lett; 2003 Jun; 544(1-3):165-70. PubMed ID: 12782309
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Purification and characterization of the SegA protein of bacteriophage T4, an endonuclease related to proteins encoded by group I introns.
    Sharma M; Hinton DM
    J Bacteriol; 1994 Nov; 176(21):6439-48. PubMed ID: 7961394
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolutionary transfer of ORF-containing group I introns between different subcellular compartments (chloroplast and mitochondrion).
    Turmel M; Côté V; Otis C; Mercier JP; Gray MW; Lonergan KM; Lemieux C
    Mol Biol Evol; 1995 Jul; 12(4):533-45. PubMed ID: 7659010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intercellular mobility and homing of an archaeal rDNA intron confers a selective advantage over intron- cells of Sulfolobus acidocaldarius.
    Aagaard C; Dalgaard JZ; Garrett RA
    Proc Natl Acad Sci U S A; 1995 Dec; 92(26):12285-9. PubMed ID: 8618886
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Purification and characterization of the in vitro activity of I-Sce I, a novel and highly specific endonuclease encoded by a group I intron.
    Monteilhet C; Perrin A; Thierry A; Colleaux L; Dujon B
    Nucleic Acids Res; 1990 Mar; 18(6):1407-13. PubMed ID: 2183191
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From monomeric to homodimeric endonucleases and back: engineering novel specificity of LAGLIDADG enzymes.
    Silva GH; Belfort M; Wende W; Pingoud A
    J Mol Biol; 2006 Aug; 361(4):744-54. PubMed ID: 16872628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the I-Spom I endonuclease from fission yeast: insights into the evolution of a group I intron-encoded homing endonuclease.
    Pellenz S; Harington A; Dujon B; Wolf K; Schäfer B
    J Mol Evol; 2002 Sep; 55(3):302-13. PubMed ID: 12187383
    [TBL] [Abstract][Full Text] [Related]  

  • 18. General vectors for archaeal hyperthermophiles: strategies based on a mobile intron and a plasmid.
    Aagaard C; Leviev I; Aravalli RN; Forterre P; Prieur D; Garrett RA
    FEMS Microbiol Rev; 1996 May; 18(2-3):93-104. PubMed ID: 8639332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purification and characterization of the DNA cleavage and recognition site of I-ScaI mitochondrial group I intron encoded endonuclease produced in Escherichia coli.
    Monteilhet C; Dziadkowiec D; Szczepanek T; Lazowska J
    Nucleic Acids Res; 2000 Mar; 28(5):1245-51. PubMed ID: 10666469
    [TBL] [Abstract][Full Text] [Related]  

  • 20. I-OmiI and I-OmiII: two intron-encoded homing endonucleases within the Ophiostoma minus rns gene.
    Hafez M; Guha TK; Hausner G
    Fungal Biol; 2014 Aug; 118(8):721-31. PubMed ID: 25110134
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.