These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 7961989)

  • 1. Deducing the organization of a transmembrane domain by disulfide cross-linking. The bacterial chemoreceptor Trg.
    Lee GF; Burrows GG; Lebert MR; Dutton DP; Hazelbauer GL
    J Biol Chem; 1994 Nov; 269(47):29920-7. PubMed ID: 7961989
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diagnostic cross-linking of paired cysteine pairs demonstrates homologous structures for two chemoreceptor domains with low sequence identity.
    Lai WC; Peach ML; Lybrand TP; Hazelbauer GL
    Protein Sci; 2006 Jan; 15(1):94-101. PubMed ID: 16322572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling the transmembrane domain of bacterial chemoreceptors.
    Peach ML; Hazelbauer GL; Lybrand TP
    Protein Sci; 2002 Apr; 11(4):912-23. PubMed ID: 11910034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detecting the conformational change of transmembrane signaling in a bacterial chemoreceptor by measuring effects on disulfide cross-linking in vivo.
    Hughson AG; Hazelbauer GL
    Proc Natl Acad Sci U S A; 1996 Oct; 93(21):11546-51. PubMed ID: 8876172
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transmembrane organization of the Bacillus subtilis chemoreceptor McpB deduced by cysteine disulfide crosslinking.
    Bunn MW; Ordal GW
    J Mol Biol; 2003 Aug; 331(4):941-9. PubMed ID: 12909020
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ligand-induced conformational changes in the Bacillus subtilis chemoreceptor McpB determined by disulfide crosslinking in vivo.
    Szurmant H; Bunn MW; Cho SH; Ordal GW
    J Mol Biol; 2004 Dec; 344(4):919-28. PubMed ID: 15544802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Signalling substitutions in the periplasmic domain of chemoreceptor Trg induce or reduce helical sliding in the transmembrane domain.
    Beel BD; Hazelbauer GL
    Mol Microbiol; 2001 May; 40(4):824-34. PubMed ID: 11401690
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative approaches to utilizing mutational analysis and disulfide crosslinking for modeling a transmembrane domain.
    Lee GF; Hazelbauer GL
    Protein Sci; 1995 Jun; 4(6):1100-7. PubMed ID: 7549874
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of transmembrane protein structure by disulfide cross-linking: the Escherichia coli Tar receptor.
    Pakula AA; Simon MI
    Proc Natl Acad Sci U S A; 1992 May; 89(9):4144-8. PubMed ID: 1315053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arrangement of core membrane segments in the MotA/MotB proton-channel complex of Escherichia coli.
    Braun TF; Al-Mawsawi LQ; Kojima S; Blair DF
    Biochemistry; 2004 Jan; 43(1):35-45. PubMed ID: 14705929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transmembrane signaling characterized in bacterial chemoreceptors by using sulfhydryl cross-linking in vivo.
    Lee GF; Lebert MR; Lilly AA; Hazelbauer GL
    Proc Natl Acad Sci U S A; 1995 Apr; 92(8):3391-5. PubMed ID: 7724572
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of protein structure in intact cells: crosslinking in vivo between introduced cysteines in the transmembrane domain of a bacterial chemoreceptor.
    Hughson AG; Lee GF; Hazelbauer GL
    Protein Sci; 1997 Feb; 6(2):315-22. PubMed ID: 9041632
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutational analysis of a transmembrane segment in a bacterial chemoreceptor.
    Baumgartner JW; Hazelbauer GL
    J Bacteriol; 1996 Aug; 178(15):4651-60. PubMed ID: 8755897
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deducing the transmembrane domain organization of presenilin-1 in gamma-secretase by cysteine disulfide cross-linking.
    Kornilova AY; Kim J; Laudon H; Wolfe MS
    Biochemistry; 2006 Jun; 45(24):7598-604. PubMed ID: 16768455
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cross-linking evidence for motional constraints within chemoreceptor trimers of dimers.
    Massazza DA; Parkinson JS; Studdert CA
    Biochemistry; 2011 Feb; 50(5):820-7. PubMed ID: 21174433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of chemotactic signal gain via modulation of a pre-formed receptor array.
    Irieda H; Homma M; Homma M; Kawagishi I
    J Biol Chem; 2006 Aug; 281(33):23880-6. PubMed ID: 16679313
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure of the conserved HAMP domain in an intact, membrane-bound chemoreceptor: a disulfide mapping study.
    Swain KE; Falke JJ
    Biochemistry; 2007 Dec; 46(48):13684-95. PubMed ID: 17994770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accessibility of introduced cysteines in chemoreceptor transmembrane helices reveals boundaries interior to bracketing charged residues.
    Boldog T; Hazelbauer GL
    Protein Sci; 2004 Jun; 13(6):1466-75. PubMed ID: 15133159
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of functionally important helical faces in transmembrane segments by scanning mutagenesis.
    Lee GF; Dutton DP; Hazelbauer GL
    Proc Natl Acad Sci U S A; 1995 Jun; 92(12):5416-20. PubMed ID: 7777522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intersubunit interaction between transmembrane helices of the bacterial aspartate chemoreceptor homodimer.
    Umemura T; Tatsuno I; Shibasaki M; Homma M; Kawagishi I
    J Biol Chem; 1998 Nov; 273(46):30110-5. PubMed ID: 9804765
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.