BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 7962011)

  • 1. Bending and compressive stresses acting on the lumbar spine during lifting activities.
    Dolan P; Earley M; Adams MA
    J Biomech; 1994 Oct; 27(10):1237-48. PubMed ID: 7962011
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Repetitive lifting tasks fatigue the back muscles and increase the bending moment acting on the lumbar spine.
    Dolan P; Adams MA
    J Biomech; 1998 Aug; 31(8):713-21. PubMed ID: 9796671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The relationship between EMG activity and extensor moment generation in the erector spinae muscles during bending and lifting activities.
    Dolan P; Adams MA
    J Biomech; 1993; 26(4-5):513-22. PubMed ID: 8478353
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Passive tissues help the back muscles to generate extensor moments during lifting.
    Dolan P; Mannion AF; Adams MA
    J Biomech; 1994 Aug; 27(8):1077-85. PubMed ID: 8089162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Loads distributed in vivo among vertebrae, muscles, spinal ligaments, and intervertebral discs in a passively flexed lumbar spine.
    Mörl F; Günther M; Riede JM; Hammer M; Schmitt S
    Biomech Model Mechanobiol; 2020 Dec; 19(6):2015-2047. PubMed ID: 32314072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PLAD (personal lift assistive device) stiffness affects the lumbar flexion/extension moment and the posterior chain EMG during symmetrical lifting tasks.
    Frost DM; Abdoli-E M; Stevenson JM
    J Electromyogr Kinesiol; 2009 Dec; 19(6):e403-12. PubMed ID: 19200755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An EMG technique for measuring spinal loading during asymmetric lifting.
    Dolan P; Kingma I; De Looze MP; van Dieen JH; Toussaint HM; Baten CT; Adams MA
    Clin Biomech (Bristol, Avon); 2001; 16 Suppl 1():S17-24. PubMed ID: 11275339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flexion relaxation during lifting: implications for torque production by muscle activity and tissue strain at the lumbo-sacral joint.
    Toussaint HM; de Winter AF; de Haas Y; de Looze MP; Van Dieën JH; Kingma I
    J Biomech; 1995 Feb; 28(2):199-210. PubMed ID: 7896862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sudden and unexpected loading generates high forces on the lumbar spine.
    Mannion AF; Adams MA; Dolan P
    Spine (Phila Pa 1976); 2000 Apr; 25(7):842-52. PubMed ID: 10751296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Erector spinae activation and movement dynamics about the lumbar spine in lordotic and kyphotic squat-lifting.
    Holmes JA; Damaser MS; Lehman SL
    Spine (Phila Pa 1976); 1992 Mar; 17(3):327-34. PubMed ID: 1566169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of on-body lift assistive device on the lumbar 3D dynamic moments and EMG during asymmetric freestyle lifting.
    Abdoli-E M; Stevenson JM
    Clin Biomech (Bristol, Avon); 2008 Mar; 23(3):372-80. PubMed ID: 18093709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regional changes in spine posture at lift onset with changes in lift distance and lift style.
    Gill KP; Bennett SJ; Savelsbergh GJ; van Dieën JH
    Spine (Phila Pa 1976); 2007 Jul; 32(15):1599-604. PubMed ID: 17621206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of squat and stoop dynamic liftings: muscle forces and internal spinal loads.
    Bazrgari B; Shirazi-Adl A; Arjmand N
    Eur Spine J; 2007 May; 16(5):687-99. PubMed ID: 17103232
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A myoelectrically based dynamic three-dimensional model to predict loads on lumbar spine tissues during lateral bending.
    McGill SM
    J Biomech; 1992 Apr; 25(4):395-414. PubMed ID: 1533860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lumbar posterior ligament involvement during extremely heavy lifts estimated from fluoroscopic measurements.
    Cholewicki J; McGill SM
    J Biomech; 1992 Jan; 25(1):17-28. PubMed ID: 1733981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trunk muscle and lumbar ligament contributions to dynamic lifts with varying degrees of trunk flexion.
    Potvin JR; McGill SM; Norman RW
    Spine (Phila Pa 1976); 1991 Sep; 16(9):1099-107. PubMed ID: 1948399
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of lumbar and hip mobility on the bending stresses acting on the lumbar spine.
    Dolan P; Adams MA
    Clin Biomech (Bristol, Avon); 1993 Jul; 8(4):185-92. PubMed ID: 23915968
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of biomechanical parameters in the lumbar spine during static sagittal plane lifting.
    Kong WZ; Goel VK; Gilbertson LG
    J Biomech Eng; 1998 Apr; 120(2):273-80. PubMed ID: 10412390
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Foot positioning instruction, initial vertical load position and lifting technique: effects on low back loading.
    Kingma I; Bosch T; Bruins L; van Dieën JH
    Ergonomics; 2004 Oct; 47(13):1365-85. PubMed ID: 15513714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wrapping of trunk thoracic extensor muscles influences muscle forces and spinal loads in lifting tasks.
    Arjmand N; Shirazi-Adl A; Bazrgari B
    Clin Biomech (Bristol, Avon); 2006 Aug; 21(7):668-75. PubMed ID: 16678948
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.