BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 7962092)

  • 21. An axonemal dynein particularly important for flagellar movement at high viscosity. Implications from a new Chlamydomonas mutant deficient in the dynein heavy chain gene DHC9.
    Yagi T; Minoura I; Fujiwara A; Saito R; Yasunaga T; Hirono M; Kamiya R
    J Biol Chem; 2005 Dec; 280(50):41412-20. PubMed ID: 16236707
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regulation of dynein-driven microtubule sliding by the radial spokes in flagella.
    Smith EF; Sale WS
    Science; 1992 Sep; 257(5076):1557-9. PubMed ID: 1387971
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Induction of temporary beating in paralyzed flagella of Chlamydomonas mutants by application of external force.
    Hayashibe K; Shingyoji C; Kamiya R
    Cell Motil Cytoskeleton; 1997; 37(3):232-9. PubMed ID: 9227853
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Radial spokes of Chlamydomonas flagella: polypeptide composition and phosphorylation of stalk components.
    Piperno G; Huang B; Ramanis Z; Luck DJ
    J Cell Biol; 1981 Jan; 88(1):73-9. PubMed ID: 6451632
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The light chain p28 associates with a subset of inner dynein arm heavy chains in Chlamydomonas axonemes.
    LeDizet M; Piperno G
    Mol Biol Cell; 1995 Jun; 6(6):697-711. PubMed ID: 7579689
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In situ localization of N and C termini of subunits of the flagellar nexin-dynein regulatory complex (N-DRC) using SNAP tag and cryo-electron tomography.
    Song K; Awata J; Tritschler D; Bower R; Witman GB; Porter ME; Nicastro D
    J Biol Chem; 2015 Feb; 290(9):5341-53. PubMed ID: 25564608
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A motile Chlamydomonas flagellar mutant that lacks outer dynein arms.
    Mitchell DR; Rosenbaum JL
    J Cell Biol; 1985 Apr; 100(4):1228-34. PubMed ID: 3156867
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Suppressor mutations in Chlamydomonas reveal a regulatory mechanism for Flagellar function.
    Huang B; Ramanis Z; Luck DJ
    Cell; 1982 Jan; 28(1):115-24. PubMed ID: 6461414
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microtubule translocation caused by three subspecies of inner-arm dynein from Chlamydomonas flagella.
    Kagami O; Takada S; Kamiya R
    FEBS Lett; 1990 May; 264(2):179-82. PubMed ID: 2141576
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Scaffold subunits support associated subunit assembly in the
    Gui L; Song K; Tritschler D; Bower R; Yan S; Dai A; Augspurger K; Sakizadeh J; Grzemska M; Ni T; Porter ME; Nicastro D
    Proc Natl Acad Sci U S A; 2019 Nov; 116(46):23152-23162. PubMed ID: 31659045
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Two-dimensional analysis of flagellar proteins from wild-type and paralyzed mutants of Chlamydomonas reinhardtii.
    Piperno G; Huang B; Luck DJ
    Proc Natl Acad Sci U S A; 1977 Apr; 74(4):1600-4. PubMed ID: 266200
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bending patterns of Chlamydomonas flagella: IV. Mutants with defects in inner and outer dynein arms indicate differences in dynein arm function.
    Brokaw CJ; Kamiya R
    Cell Motil Cytoskeleton; 1987; 8(1):68-75. PubMed ID: 2958145
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Beat frequency difference between the two flagella of Chlamydomonas depends on the attachment site of outer dynein arms on the outer-doublet microtubules.
    Takada S; Kamiya R
    Cell Motil Cytoskeleton; 1997; 36(1):68-75. PubMed ID: 8986378
    [TBL] [Abstract][Full Text] [Related]  

  • 34. DRC3 connects the N-DRC to dynein g to regulate flagellar waveform.
    Awata J; Song K; Lin J; King SM; Sanderson MJ; Nicastro D; Witman GB
    Mol Biol Cell; 2015 Aug; 26(15):2788-800. PubMed ID: 26063732
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Flagellar radial spokes contain a Ca2+-stimulated nucleoside diphosphate kinase.
    Patel-King RS; Gorbatyuk O; Takebe S; King SM
    Mol Biol Cell; 2004 Aug; 15(8):3891-902. PubMed ID: 15194815
    [TBL] [Abstract][Full Text] [Related]  

  • 36. ida4-1, ida4-2, and ida4-3 are intron splicing mutations affecting the locus encoding p28, a light chain of Chlamydomonas axonemal inner dynein arms.
    LeDizet M; Piperno G
    Mol Biol Cell; 1995 Jun; 6(6):713-23. PubMed ID: 7579690
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A NIMA-Related Kinase Suppresses the Flagellar Instability Associated with the Loss of Multiple Axonemal Structures.
    Lin H; Zhang Z; Guo S; Chen F; Kessler JM; Wang YM; Dutcher SK
    PLoS Genet; 2015 Sep; 11(9):e1005508. PubMed ID: 26348919
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The LC7 light chains of Chlamydomonas flagellar dyneins interact with components required for both motor assembly and regulation.
    DiBella LM; Sakato M; Patel-King RS; Pazour GJ; King SM
    Mol Biol Cell; 2004 Oct; 15(10):4633-46. PubMed ID: 15304520
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Three-dimensional structure of the radial spokes reveals heterogeneity and interactions with dyneins in Chlamydomonas flagella.
    Barber CF; Heuser T; Carbajal-González BI; Botchkarev VV; Nicastro D
    Mol Biol Cell; 2012 Jan; 23(1):111-20. PubMed ID: 22072792
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular cloning and sequence analysis of the Chlamydomonas gene coding for radial spoke protein 3: flagellar mutation pf-14 is an ochre allele.
    Williams BD; Velleca MA; Curry AM; Rosenbaum JL
    J Cell Biol; 1989 Jul; 109(1):235-45. PubMed ID: 2745550
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.