These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Sorption of bacterial endotoxin and retention of bacteria by positively charged membrane filters. van Doorne H J Parenter Sci Technol; 1993; 47(5):192-8. PubMed ID: 8263658 [TBL] [Abstract][Full Text] [Related]
7. Potential hazards associated with microbial contamination of in-line filters during intravenous therapy. Holmes CJ; Kundsin RB; Ausman RK; Walter CW J Clin Microbiol; 1980 Dec; 12(6):725-31. PubMed ID: 6796597 [TBL] [Abstract][Full Text] [Related]
9. Endotoxin removal by charge-modified filters. Gerba CP; Hou K Appl Environ Microbiol; 1985 Dec; 50(6):1375-7. PubMed ID: 3911902 [TBL] [Abstract][Full Text] [Related]
10. Depyrogenation by endotoxin removal with positively charged depth filter cartridge. Hou KC; Zaniewski R J Parenter Sci Technol; 1990; 44(4):204-9. PubMed ID: 2213428 [TBL] [Abstract][Full Text] [Related]
11. Purification of Pseudomonas aeruginosa endotoxin by membrane partition chromatography. Rubio N; Lopez R Appl Microbiol; 1972 Feb; 23(2):211-3. PubMed ID: 4622818 [TBL] [Abstract][Full Text] [Related]
12. Bacterial colonization and endotoxin contamination of intravenous infusion fluids. Trautmann M; Zauser B; Wiedeck H; Buttenschön K; Marre R J Hosp Infect; 1997 Nov; 37(3):225-36. PubMed ID: 9421774 [TBL] [Abstract][Full Text] [Related]
13. Effectiveness of in-Line Filters to Completely Remove Particulate Contamination During a Pediatric Multidrug Infusion Protocol. Perez M; Décaudin B; Abou Chahla W; Nelken B; Storme L; Masse M; Barthélémy C; Lebuffe G; Odou P Sci Rep; 2018 May; 8(1):7714. PubMed ID: 29769547 [TBL] [Abstract][Full Text] [Related]
14. In vitro analysis of the effect of in-line 1.2 micron filters on two formulations of propofol (2,6-diisopropyl phenol). Kennedy RA; Kennedy ML; Morrissey H; Ball PA PDA J Pharm Sci Technol; 2015; 69(2):297-306. PubMed ID: 25868995 [TBL] [Abstract][Full Text] [Related]
15. Ultrafiltration and endotoxin removal from dialysis fluids. Di Felice A; Cappelli G; Facchini F; Tetta C; Cornia F; Aimo G; Lusvarghi E Kidney Int Suppl; 1993 Jun; 41():S201-4. PubMed ID: 8320921 [TBL] [Abstract][Full Text] [Related]
16. Intravenous in-line filters for preventing morbidity and mortality in neonates. Foster J; Richards R; Showell M Cochrane Database Syst Rev; 2006 Apr; (2):CD005248. PubMed ID: 16625631 [TBL] [Abstract][Full Text] [Related]
17. Depyrogenation of pharmaceutical solutions using submicron and ultrafilters. Brown S; Fuller AC J Parenter Sci Technol; 1993; 47(6):285-7. PubMed ID: 8120732 [TBL] [Abstract][Full Text] [Related]
18. Importance of sampling, extraction and preservation for the quantitation of biologically active endoto. Laitinen SK Ann Agric Environ Med; 1999; 6(1):33-38. PubMed ID: 10384213 [TBL] [Abstract][Full Text] [Related]
19. Gram-negative bacterial lipopolysaccharide retention by a positively charged new-generation filter. Bononi I; Balatti V; Gaeta S; Tognon M Appl Environ Microbiol; 2008 Oct; 74(20):6470-2. PubMed ID: 18723658 [TBL] [Abstract][Full Text] [Related]
20. Effect of antibiotics and osmotic change on the release of endotoxin by bacteria retained on intravenous inline filters. Rusmin S; DeLuca PP Am J Hosp Pharm; 1975 Apr; 32(4):378-80. PubMed ID: 805534 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]