These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 7963029)

  • 1. Two-tone suppression in a locally active nonlinear model of the cochlea.
    Kanis LJ; de Boer E
    J Acoust Soc Am; 1994 Oct; 96(4):2156-65. PubMed ID: 7963029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-tone suppression in the basilar membrane of the cochlea: mechanical basis of auditory-nerve rate suppression.
    Ruggero MA; Robles L; Rich NC
    J Neurophysiol; 1992 Oct; 68(4):1087-99. PubMed ID: 1432070
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-suppression in a locally active nonlinear model of the cochlea: a quasilinear approach.
    Kanis LJ; de Boer E
    J Acoust Soc Am; 1993 Dec; 94(6):3199-206. PubMed ID: 8300954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-tone suppression of inner hair cell and basilar membrane responses in the guinea pig.
    Nuttall AL; Dolan DF
    J Acoust Soc Am; 1993 Jan; 93(1):390-400. PubMed ID: 8423256
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-Tone Suppression of Simultaneous Electrical and Mechanical Responses in the Cochlea.
    Dong W; Olson ES
    Biophys J; 2016 Oct; 111(8):1805-1815. PubMed ID: 27760366
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-tone suppression of basilar membrane vibrations in the base of the guinea pig cochlea using "low-side" suppressors.
    Geisler CD; Nuttall AL
    J Acoust Soc Am; 1997 Jul; 102(1):430-40. PubMed ID: 9228805
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biophysics of the cochlea. II: Stationary nonlinear phenomenology.
    Nobili R; Mammano F
    J Acoust Soc Am; 1996 Apr; 99(4 Pt 1):2244-55. PubMed ID: 8730071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Frequency-dependent self-induced bias of the basilar membrane and its potential for controlling sensitivity and tuning in the mammalian cochlea.
    LePage EL
    J Acoust Soc Am; 1987 Jul; 82(1):139-54. PubMed ID: 3624635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Frequency dependence of acoustic distortion products in a locally active model of the cochlea.
    Kanis LJ; de Boer E
    J Acoust Soc Am; 1997 Mar; 101(3):1527-31. PubMed ID: 9069623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Suppression and (2f1-f2)-difference tones in a nonlinear cochlear preprocessing model with active feedback.
    Zwicker E
    J Acoust Soc Am; 1986 Jul; 80(1):163-76. PubMed ID: 3745662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The mechanical waveform of the basilar membrane. II. From data to models--and back.
    de Boer E; Nuttall AL
    J Acoust Soc Am; 2000 Mar; 107(3):1487-96. PubMed ID: 10738803
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The spatial buildup of compression and suppression in the mammalian cochlea.
    Versteegh CP; van der Heijden M
    J Assoc Res Otolaryngol; 2013 Aug; 14(4):523-45. PubMed ID: 23690278
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-compartment passive frequency domain cochlea model allowing independent fluid coupling to the tectorial and basilar membranes.
    Cormack J; Liu Y; Nam JH; Gracewski SM
    J Acoust Soc Am; 2015 Mar; 137(3):1117-25. PubMed ID: 25786927
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Auditory nerve rate-level functions for two-tone stimuli: possible relation to basilar membrane nonlinearity.
    Sokolowski BH; Sachs MB; Goldstein JL
    Hear Res; 1989 Sep; 41(2-3):115-23. PubMed ID: 2808144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A biophysical model of cochlear processing: intensity dependence of pure tone responses.
    Shamma SA; Chadwick RS; Wilbur WJ; Morrish KA; Rinzel J
    J Acoust Soc Am; 1986 Jul; 80(1):133-45. PubMed ID: 3745659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-frequency bias tone suppression of auditory-nerve responses to low-level clicks and tones.
    Nam H; Guinan JJ
    Hear Res; 2016 Nov; 341():66-78. PubMed ID: 27550413
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of temporary thershold shift on combination-tone generation and on two-tone suppression.
    Smoorenburg GF
    Hear Res; 1980 Jun; 2(3-4):347-55. PubMed ID: 7410239
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling the active process of the cochlea: phase relations, amplification, and spontaneous oscillation.
    Markin VS; Hudspeth AJ
    Biophys J; 1995 Jul; 69(1):138-47. PubMed ID: 7669891
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-tone suppression in cochlear mechanics.
    Cooper NP
    J Acoust Soc Am; 1996 May; 99(5):3087-98. PubMed ID: 8642119
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A hardware cochlear nonlinear preprocessing model with active feedback.
    Zwicker E
    J Acoust Soc Am; 1986 Jul; 80(1):146-53. PubMed ID: 3745660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.