These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 7963029)

  • 21. Point-impedance characterization of the basilar membrane in a three-dimensional cochlea model.
    Diependaal RJ; Viergever MA
    Hear Res; 1983 Jul; 11(1):33-40. PubMed ID: 6885647
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The location of the cochlear amplifier: spatial representation of a single tone on the guinea pig basilar membrane.
    Russell IJ; Nilsen KE
    Proc Natl Acad Sci U S A; 1997 Mar; 94(6):2660-4. PubMed ID: 9122252
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Frequency selectivity of the cochlea for formant peaks at high signal levels.
    Hall JL
    J Acoust Soc Am; 1980 Aug; 68(2):480-1. PubMed ID: 7419807
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Further tests of the local nonlinear interaction-based mechanism for simultaneous suppression of tone burst-evoked otoacoustic emissions.
    Killan EC; Lutman ME; Thyer NJ
    Hear Res; 2015 Jan; 319():12-24. PubMed ID: 25446244
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comment on "Two-tone suppression of inner hair cell and basilar membrane responses in the guinea pig" [J. Acoust. Soc. Am. 93, 390-400 (1993)].
    Cheatham MA; Dallos P
    J Acoust Soc Am; 1993 Dec; 94(6):3509-10. PubMed ID: 8300961
    [No Abstract]   [Full Text] [Related]  

  • 26. Cochlear models: two-tone suppression and the second filter.
    Hall JL
    J Acoust Soc Am; 1980 May; 67(5):1722-8. PubMed ID: 7372926
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multicomponent stimulus interactions observed in basilar-membrane vibration in the basal region of the chinchilla cochlea.
    Rhode WS; Recio A
    J Acoust Soc Am; 2001 Dec; 110(6):3140-54. PubMed ID: 11785815
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comment on "Mutual suppression in the 6 kHz region of sensitive chinchilla cochleae" [J. Acoust. Soc. Am. 121, 2805-2818 (2007)].
    Cheatham MA
    J Acoust Soc Am; 2008 Feb; 123(2):602-5. PubMed ID: 18247865
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cochlear model with three-dimensional fluid, inner sulcus and feed-forward mechanism.
    Steele CR; Lim KM
    Audiol Neurootol; 1999; 4(3-4):197-203. PubMed ID: 10187930
    [TBL] [Abstract][Full Text] [Related]  

  • 30. On equivalence of locally active models of the cochlea.
    de Boer E
    J Acoust Soc Am; 1995 Sep; 98(3):1400-9. PubMed ID: 7560509
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Decoupling the level dependence of the basilar membrane gain and phase in nonlinear cochlea models.
    Sisto R; Moleti A; Altoè A
    J Acoust Soc Am; 2015 Aug; 138(2):EL155-60. PubMed ID: 26328742
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mutual suppression in the 6 kHz region of sensitive chinchilla cochleae.
    Rhode WS
    J Acoust Soc Am; 2007 May; 121(5 Pt1):2805-18. PubMed ID: 17550179
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Timing of cochlear feedback: spatial and temporal representation of a tone across the basilar membrane.
    Nilsen KE; Russell IJ
    Nat Neurosci; 1999 Jul; 2(7):642-8. PubMed ID: 10404197
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Noninvasive in vivo imaging reveals differences between tectorial membrane and basilar membrane traveling waves in the mouse cochlea.
    Lee HY; Raphael PD; Park J; Ellerbee AK; Applegate BE; Oghalai JS
    Proc Natl Acad Sci U S A; 2015 Mar; 112(10):3128-33. PubMed ID: 25737536
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Finite element modelling of human auditory periphery including a feed-forward amplification of the cochlea.
    Wang X; Wang L; Zhou J; Hu Y
    Comput Methods Biomech Biomed Engin; 2014 Aug; 17(10):1096-107. PubMed ID: 23171060
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparing frequency-domain with time-domain solutions for a locally active nonlinear model of the cochlea.
    Kanis LJ; de Boer E
    J Acoust Soc Am; 1996 Oct; 100(4 Pt 1):2543-6. PubMed ID: 8865657
    [No Abstract]   [Full Text] [Related]  

  • 37. The mechanical waveform of the basilar membrane. IV. Tone and noise stimuli.
    de BE; Nuttall AL
    J Acoust Soc Am; 2002 Feb; 111(2):979-89. PubMed ID: 11863200
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cochlear mechanics: analysis for a pure tone.
    Holmes MH; Cole JD
    J Acoust Soc Am; 1984 Sep; 76(3):767-78. PubMed ID: 6491049
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The mechanical waveform of the basilar membrane. III. Intensity effects.
    de Boer E; Nuttall AL
    J Acoust Soc Am; 2000 Mar; 107(3):1497-507. PubMed ID: 10738804
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A model of cochlear mechanics with outer hair cell motility.
    Neely ST
    J Acoust Soc Am; 1993 Jul; 94(1):137-46. PubMed ID: 8354757
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.