These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 7963031)

  • 1. Modeling the fine structure of the 2f1-f2 acoustic distortion product. II. Model evaluation.
    Sun XM; Schmiedt RA; He NJ; Lam CF
    J Acoust Soc Am; 1994 Oct; 96(4):2175-83. PubMed ID: 7963031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling the fine structure of the 2f1-f2 acoustic distortion product. I. Model development.
    Sun XM; Schmiedt RA; He NJ; Lam CF
    J Acoust Soc Am; 1994 Oct; 96(4):2166-74. PubMed ID: 7963030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fine structure of the 2 f1-f2 acoustic distortion products: effects of primary level and frequency ratios.
    He N; Schmiedt RA
    J Acoust Soc Am; 1997 Jun; 101(6):3554-65. PubMed ID: 9193044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fine structure of the 2f1-f2 acoustic distortion product: changes with primary level.
    He NJ; Schmiedt RA
    J Acoust Soc Am; 1993 Nov; 94(5):2659-69. PubMed ID: 8270742
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Suppression and (2f1-f2)-difference tones in a nonlinear cochlear preprocessing model with active feedback.
    Zwicker E
    J Acoust Soc Am; 1986 Jul; 80(1):163-76. PubMed ID: 3745662
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Age-related shifts in distortion product otoacoustic emissions peak-ratios and amplitude modulation spectra.
    Lai J; Bartlett EL
    Hear Res; 2015 Sep; 327():186-98. PubMed ID: 26232530
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interpretation of distortion product otoacoustic emission measurements. II. Estimating tuning characteristics using three stimulus tones.
    Mills DM
    J Acoust Soc Am; 1998 Jan; 103(1):507-23. PubMed ID: 9440336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement of acoustic distortion reveals underlying similarities between human and rodent mechanical responses.
    Brown AM; Gaskill SA
    J Acoust Soc Am; 1990 Aug; 88(2):840-9. PubMed ID: 2212309
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biophysics of the cochlea. II: Stationary nonlinear phenomenology.
    Nobili R; Mammano F
    J Acoust Soc Am; 1996 Apr; 99(4 Pt 1):2244-55. PubMed ID: 8730071
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compression estimates using behavioral and otoacoustic emission measures.
    Williams EJ; Bacon SP
    Hear Res; 2005 Mar; 201(1-2):44-54. PubMed ID: 15721560
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Locus of generation for the 2f1-f2 vs 2f2-f1 distortion-product otoacoustic emissions in normal-hearing humans revealed by suppression tuning, onset latencies, and amplitude correlations.
    Martin GK; Jassir D; Stagner BB; Whitehead ML; Lonsbury-Martin BL
    J Acoust Soc Am; 1998 Apr; 103(4):1957-71. PubMed ID: 9566319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for the distortion product frequency place as a source of distortion product otoacoustic emission (DPOAE) fine structure in humans. I. Fine structure and higher-order DPOAE as a function of the frequency ratio f2/f1.
    Mauermann M; Uppenkamp S; van Hengel PW; Kollmeier B
    J Acoust Soc Am; 1999 Dec; 106(6):3473-83. PubMed ID: 10615687
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The behavior of the acoustic distortion product, 2f1-f2, from the human ear and its relation to auditory sensitivity.
    Gaskill SA; Brown AM
    J Acoust Soc Am; 1990 Aug; 88(2):821-39. PubMed ID: 2212308
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distortion product otoacoustic emissions and basilar membrane vibration in the 6-9 kHz region of sensitive chinchilla cochleae.
    Rhode WS
    J Acoust Soc Am; 2007 Nov; 122(5):2725-37. PubMed ID: 18189565
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multicomponent acoustic distortion product otoacoustic emission phase in humans. II. Implications for distortion product otoacoustic emissions generation.
    Moulin A; Kemp DT
    J Acoust Soc Am; 1996 Sep; 100(3):1640-62. PubMed ID: 8817892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling otoacoustic emission and hearing threshold fine structures.
    Talmadge CL; Tubis A; Long GR; Piskorski P
    J Acoust Soc Am; 1998 Sep; 104(3 Pt 1):1517-43. PubMed ID: 9745736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mathematical modeling of cochlear mechanics.
    Neely ST
    J Acoust Soc Am; 1985 Jul; 78(1 Pt 2):345-52. PubMed ID: 4031241
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intermodulation components in inner hair cell and organ of Corti responses.
    Cheatham MA; Dallos P
    J Acoust Soc Am; 1997 Aug; 102(2 Pt 1):1038-48. PubMed ID: 9265752
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Realistic mechanical tuning in a micromechanical cochlear model.
    Kolston PJ; Viergever MA; de Boer E; Diependaal RJ
    J Acoust Soc Am; 1989 Jul; 86(1):133-40. PubMed ID: 2754106
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Micromechanical responses to tones in the auditory fovea of the greater mustached bat's cochlea.
    Russell IJ; Kössl M
    J Neurophysiol; 1999 Aug; 82(2):676-86. PubMed ID: 10444665
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.