BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 7963033)

  • 1. Modulation of the hair cell motor: a possible source of odd-order distortion.
    Brown AM
    J Acoust Soc Am; 1994 Oct; 96(4):2210-5. PubMed ID: 7963033
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comment on "Modulation of the hair cell motor: a possible source of odd-order distortion" [J. Acoust. Soc. Am. 96, 2210-2215 (1994)].
    Nuttall AL; Dolan DF
    J Acoust Soc Am; 1994 Oct; 96(4):2583-4. PubMed ID: 7963039
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Are inner or outer hair cells the source of summating potentials recorded from the round window?
    Durrant JD; Wang J; Ding DL; Salvi RJ
    J Acoust Soc Am; 1998 Jul; 104(1):370-7. PubMed ID: 9670530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acoustic modulation of electrically evoked distortion product otoacoustic emissions in gerbil cochlea.
    Ren T
    Neurosci Lett; 1996 Apr; 207(3):167-70. PubMed ID: 8728476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inner hair cell responses to the 2f1-f2 intermodulation distortion product.
    Nuttall AL; Dolan DF
    J Acoust Soc Am; 1990 Feb; 87(2):782-90. PubMed ID: 2307775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intermodulation distortion in the cochlea: could basal vibration be the major cause of round window CM distortion?
    Brown AM; Kemp DT
    Hear Res; 1985; 19(3):191-8. PubMed ID: 4066519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distortion in the cochlea: acoustic f2-f1 at low stimulus levels.
    Brown AM
    Hear Res; 1993 Nov; 70(2):160-6. PubMed ID: 8294260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Outer hair cells as fast and slow cochlear amplifiers with a bidirectional transduction cycle.
    Zenner HP; Arnold W; Gitter AH
    Acta Otolaryngol; 1988; 105(5-6):457-62. PubMed ID: 2456662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acoustic distortion from rodent ears: a comparison of responses from rats, guinea pigs and gerbils.
    Brown AM
    Hear Res; 1987 Nov; 31(1):25-37. PubMed ID: 3429348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intermodulation distortion (F2-F1) in inner hair cell and basilar membrane responses.
    Nuttall AL; Dolan DF
    J Acoust Soc Am; 1993 Apr; 93(4 Pt 1):2061-8. PubMed ID: 8473618
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The potential use of low-frequency tones to locate regions of outer hair cell loss.
    Kamerer AM; Diaz FJ; Peppi M; Chertoff ME
    Hear Res; 2016 Dec; 342():39-47. PubMed ID: 27677389
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transfer characteristic of the inner hair cell synapse: steady-state analysis.
    Zagaeski M; Cody AR; Russell IJ; Mountain DC
    J Acoust Soc Am; 1994 Jun; 95(6):3430-4. PubMed ID: 8046135
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distortion products f1 + fh and 2f1 + fh in the inner ear.
    Peeters S; Sansen W; Forrez G
    Hear Res; 1980 Jun; 2(3-4):369-78. PubMed ID: 7410241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intermodulation components in inner hair cell and organ of Corti responses.
    Cheatham MA; Dallos P
    J Acoust Soc Am; 1997 Aug; 102(2 Pt 1):1038-48. PubMed ID: 9265752
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mathematical modeling of cochlear mechanics.
    Neely ST
    J Acoust Soc Am; 1985 Jul; 78(1 Pt 2):345-52. PubMed ID: 4031241
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Are cochlear outer hair cells the origin of otoacoustic emissions?].
    Plinkert PK; Zenner HP
    Rev Laryngol Otol Rhinol (Bord); 1990; 111(1):41-3. PubMed ID: 1983364
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A second cochlear-frequency map that correlates distortion product and neural tuning measurements.
    Allen JB; Fahey PF
    J Acoust Soc Am; 1993 Aug; 94(2 Pt 1):809-16. PubMed ID: 8370887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of perilymph viscosity on low-frequency intracochlear pressures and the cochlear input impedance of the cat.
    Koshigoe S; Kwok WK; Tubis A
    J Acoust Soc Am; 1983 Aug; 74(2):486-92. PubMed ID: 6619426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Age-related shifts in distortion product otoacoustic emissions peak-ratios and amplitude modulation spectra.
    Lai J; Bartlett EL
    Hear Res; 2015 Sep; 327():186-98. PubMed ID: 26232530
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wever and Lawrence revisited: effects of nulling basilar membrane movement on concomitant whole-nerve action potential.
    Offut G
    J Aud Res; 1986 Jan; 26(1):43-54. PubMed ID: 3610990
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.