These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 7963809)
1. RF H-field fluxtubes for safe and controlled hyperthermia. Franconi C; Banci G; Tiberio CA Int J Hyperthermia; 1994; 10(4):537-51. PubMed ID: 7963809 [TBL] [Abstract][Full Text] [Related]
2. Thermal distribution of radio-frequency inductive hyperthermia using an inductive aperture-type applicator: evaluation of the effect of tumour size and depth. Kuroda S; Uchida N; Sugimura K; Kato H Med Biol Eng Comput; 1999 May; 37(3):285-90. PubMed ID: 10505376 [TBL] [Abstract][Full Text] [Related]
3. Low-frequency RF hyperthermia: IV--A 27 MHz hybrid applicator for localized deep tumor heating. Franconi C; Raganella L; Tiberio CA IEEE Trans Biomed Eng; 1991 Mar; 38(3):287-93. PubMed ID: 2066143 [TBL] [Abstract][Full Text] [Related]
4. 27 MHz hybrid evanescent-mode applicators (HEMA) with flexible heating field for deep and safe subcutaneous hyperthermia. Franconi C; Vrba J; Montecchia F Int J Hyperthermia; 1993; 9(5):655-73. PubMed ID: 8245578 [TBL] [Abstract][Full Text] [Related]
5. Prospects for radiofrequency hyperthermia applicator research. I--Pre-optimised prototypes of endocavitary applicators with matching interfaces for prostate hyperplasia and cancer treatments. Franconi C; Vrba J; Micali F; Pesce F Int J Hyperthermia; 2011; 27(2):187-98. PubMed ID: 21250898 [TBL] [Abstract][Full Text] [Related]
6. Present and future status of noninvasive selective deep heating using RF in hyperthermia. Kato H; Ishida T Med Biol Eng Comput; 1993 Jul; 31 Suppl():S2-11. PubMed ID: 8231321 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of microwave hyperthermia applicators. Chou CK Bioelectromagnetics; 1992; 13(6):581-97. PubMed ID: 1482420 [TBL] [Abstract][Full Text] [Related]
8. Development of an inductive, non-invasive RF applicator for studying hyperthermia in a rat brain tumour model. Heinzl L; Hunt JW; Bernstein M Int J Hyperthermia; 1991; 7(2):301-15. PubMed ID: 1880457 [TBL] [Abstract][Full Text] [Related]
9. Radio-frequency ring applicator: energy distributions measured in the CDRH phantom. van Rhoon GC; Raskmark P; Hornsleth SN; van den Berg PM Med Biol Eng Comput; 1994 Nov; 32(6):643-8. PubMed ID: 7723423 [TBL] [Abstract][Full Text] [Related]
10. Effects of fat thickness on heating patterns of the microwave applicator MA-151 at 631 and 915 MHz. Chou CK; McDougall JA; Chan KW; Luk KH Int J Radiat Oncol Biol Phys; 1990 Oct; 19(4):1067-70. PubMed ID: 2211244 [TBL] [Abstract][Full Text] [Related]
11. Capacitive heating of phantom and human tumors with an 8 MHz radiofrequency applicator (Thermotron RF-8). Song CW; Rhee JG; Lee CK; Levitt SH Int J Radiat Oncol Biol Phys; 1986 Mar; 12(3):365-72. PubMed ID: 3957735 [TBL] [Abstract][Full Text] [Related]
12. Development of a family of RF helical coil applicators which produce transversely uniform axially distributed heating in cylindrical fat-muscle phantoms. Ruggera PS; Kantor G IEEE Trans Biomed Eng; 1984 Jan; 31(1):98-106. PubMed ID: 6724615 [No Abstract] [Full Text] [Related]
13. Improved reliability of repetitive RF interstitial heating in combination with brachytherapy: the effective use of water. Kasai T; Kato H; Uchida N; Sugihara M; Sugimura K Int J Hyperthermia; 2001; 17(2):160-71. PubMed ID: 11252359 [TBL] [Abstract][Full Text] [Related]
14. Thermal magnetic resonance: physics considerations and electromagnetic field simulations up to 23.5 Tesla (1GHz). Winter L; Oezerdem C; Hoffmann W; van de Lindt T; Periquito J; Ji Y; Ghadjar P; Budach V; Wust P; Niendorf T Radiat Oncol; 2015 Sep; 10():201. PubMed ID: 26391138 [TBL] [Abstract][Full Text] [Related]
15. Contact flexible microstrip applicators (CFMA) in a range from microwaves up to short waves. Gelvich EA; Mazokhin VN IEEE Trans Biomed Eng; 2002 Sep; 49(9):1015-23. PubMed ID: 12214873 [TBL] [Abstract][Full Text] [Related]
16. Experimental validation of hyperthermia SAR treatment planning using MR B1+ imaging. Van den Berg CA; Bartels LW; De Leeuw AA; Lagendijk JJ; Van de Kamer JB Phys Med Biol; 2004 Nov; 49(22):5029-42. PubMed ID: 15609556 [TBL] [Abstract][Full Text] [Related]
17. A ring capacitor applicator in hyperthermia: energy distributions in a fat-muscle layered model for different ring electrode configurations. van Rhoon GC; Sowinski MJ; van den Berg PM; Visser AG; Reinhold HS Int J Radiat Oncol Biol Phys; 1990 Jan; 18(1):77-85. PubMed ID: 2298638 [TBL] [Abstract][Full Text] [Related]
18. A new inductive applicator for hyperthermia. Kato H; Ishida T J Microw Power; 1983 Dec; 18(4):331-6. PubMed ID: 6561255 [TBL] [Abstract][Full Text] [Related]
19. Design of a clinical deep-body hyperthermia system based on the 'coaxial TEM' applicator. De Leeuw AA; Lagendijk JJ Int J Hyperthermia; 1987; 3(5):413-21. PubMed ID: 3681041 [TBL] [Abstract][Full Text] [Related]
20. Inductive heating of ferrimagnetic particles and magnetic fluids: physical evaluation of their potential for hyperthermia. Jordan A; Wust P; Fähling H; John W; Hinz A; Felix R Int J Hyperthermia; 1993; 9(1):51-68. PubMed ID: 8433026 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]