These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

371 related articles for article (PubMed ID: 796407)

  • 1. Mutants of Escherichia coli K12 unable to use fumarate as an anaerobic electron acceptor.
    Lambden PR; Guest JR
    J Gen Microbiol; 1976 Dec; 97(2):145-60. PubMed ID: 796407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anaerobic growth of Escherichia coli K12 with fumarate as terminal electron acceptor. Genetic studies with menaquinone and fluoroacetate-resistant mutants.
    Guest JR
    J Gen Microbiol; 1979 Dec; 115(2):259-71. PubMed ID: 393800
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation and properties of fumarate reductase mutants of Escherichia coli.
    Spencer ME; Guest JR
    J Bacteriol; 1973 May; 114(2):563-70. PubMed ID: 4574693
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of a second gene involved in global regulation of fumarate reductase and other nitrate-controlled genes for anaerobic respiration in Escherichia coli.
    Kalman LV; Gunsalus RP
    J Bacteriol; 1989 Jul; 171(7):3810-6. PubMed ID: 2544557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The frdR gene of Escherichia coli globally regulates several operons involved in anaerobic growth in response to nitrate.
    Kalman LV; Gunsalus RP
    J Bacteriol; 1988 Feb; 170(2):623-9. PubMed ID: 3276662
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel method for isolating chlorate-resistant mutants of Escherichia coli K12 by anaerobic selection on a lactate plus fumarate medium.
    Lambdren PR; Guest JR
    J Gen Microbiol; 1976 Mar; 93(1):173-6. PubMed ID: 772165
    [No Abstract]   [Full Text] [Related]  

  • 7. Regulation of Escherichia coli fumarate reductase (frdABCD) operon expression by respiratory electron acceptors and the fnr gene product.
    Jones HM; Gunsalus RP
    J Bacteriol; 1987 Jul; 169(7):3340-9. PubMed ID: 3298218
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional anaerobic electron transport linked to the reduction of nitrate and fumarate in membranes from Escherichia coli as demonstrated by quenching of atebrin fluorescence.
    Haddock BA; Kendall-Tobias MW
    Biochem J; 1975 Dec; 152(3):655-9. PubMed ID: 776172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of quinones in electron transport to oxygen and nitrate in Escherichia coli. Studies with a ubiA- menA- double quinone mutant.
    Wallace BJ; Young IG
    Biochim Biophys Acta; 1977 Jul; 461(1):84-100. PubMed ID: 195602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three classes of Escherichia coli mutants selected for aerobic expression of fumarate reductase.
    Iuchi S; Kuritzkes DR; Lin EC
    J Bacteriol; 1986 Dec; 168(3):1415-21. PubMed ID: 3536878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anaerobic L- -glycerophosphate dehydrogenase of Escherichia coli: its genetic locus and its physiological role.
    Kistler WS; Lin EC
    J Bacteriol; 1971 Dec; 108(3):1224-34. PubMed ID: 4945192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The chromosomal location and pleiotropic effects of mutations of the nirA+ gene of Escherichia coli K12: the essential role of nirA+ in nitrite reduction and in other anaerobic redox reactions.
    Newman BM; Cole JA
    J Gen Microbiol; 1978 May; 106(1):1-12. PubMed ID: 206651
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Menaquinone biosynthesis: mutants of Escherichia coli K-12 requiring 2-succinylbenzoate.
    Guest JR
    J Bacteriol; 1977 Jun; 130(3):1038-46. PubMed ID: 324971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential roles for menaquinone and demethylmenaquinone in anaerobic electron transport of E. coli and their fnr-independent expression.
    Unden G
    Arch Microbiol; 1988; 150(5):499-503. PubMed ID: 2849923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduction and removal of heptavalent technetium from solution by Escherichia coli.
    Lloyd JR; Cole JA; Macaskie LE
    J Bacteriol; 1997 Mar; 179(6):2014-21. PubMed ID: 9068649
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduced nicotinamide adenine dinucleotide dependent reduction of fumarate coupled to membrane energization in a cytochrome deficient mutant of Escherichia coli K12.
    Singh AP; Bragg PD
    Biochim Biophys Acta; 1975 Aug; 396(2):229-41. PubMed ID: 50861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anaerobic growth of Escherichia coli on formate by reduction of nitrate, fumarate, and trimethylamine N-oxide.
    Yamamoto I; Ishimoto M
    Z Allg Mikrobiol; 1977; 17(3):235-42. PubMed ID: 327708
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterisation of Escherichia coli K-12 mutants defective in formate-dependent nitrite reduction: essential roles for hemN and the menFDBCE operon.
    Tyson K; Metheringham R; Griffiths L; Cole J
    Arch Microbiol; 1997 Nov; 168(5):403-11. PubMed ID: 9325429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anaerobic fumarate transport in Escherichia coli by an fnr-dependent dicarboxylate uptake system which is different from the aerobic dicarboxylate uptake system.
    Engel P; Krämer R; Unden G
    J Bacteriol; 1992 Sep; 174(17):5533-9. PubMed ID: 1512189
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anaerobic transport in Escherichia coli membrane vesicles.
    Boonstra J; Huttunen MT; Konings WN
    J Biol Chem; 1975 Sep; 250(17):6792-8. PubMed ID: 1099094
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.