These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
371 related articles for article (PubMed ID: 796407)
41. Escherichia coli mutants with altered control of alcohol dehydrogenase and nitrate reductase. Clark D; Cronan JE J Bacteriol; 1980 Jan; 141(1):177-83. PubMed ID: 6986356 [TBL] [Abstract][Full Text] [Related]
42. Oxidation of reduced menaquinone by the fumarate reductase complex in Escherichia coli requires the hydrophobic FrdD peptide. Cecchini G; Thompson CR; Ackrell BA; Westenberg DJ; Dean N; Gunsalus RP Proc Natl Acad Sci U S A; 1986 Dec; 83(23):8898-902. PubMed ID: 3538014 [TBL] [Abstract][Full Text] [Related]
43. Bacterial catalysis of nitrosation: involvement of the nar operon of Escherichia coli. Ralt D; Wishnok JS; Fitts R; Tannenbaum SR J Bacteriol; 1988 Jan; 170(1):359-64. PubMed ID: 3275620 [TBL] [Abstract][Full Text] [Related]
44. Competition between Escherichia coli strains expressing either a periplasmic or a membrane-bound nitrate reductase: does Nap confer a selective advantage during nitrate-limited growth? Potter LC; Millington P; Griffiths L; Thomas GH; Cole JA Biochem J; 1999 Nov; 344 Pt 1(Pt 1):77-84. PubMed ID: 10548536 [TBL] [Abstract][Full Text] [Related]
45. Proteins of the inner membrane of Escherichia coli: changes in composition associated with anaerobic growth and fumarate reductase amber mutation. Spencer ME; Guest JR J Bacteriol; 1974 Mar; 117(3):954-9. PubMed ID: 4591961 [TBL] [Abstract][Full Text] [Related]
46. Mutations in fnr that alter anaerobic regulation of electron transport-associated genes in Escherichia coli. Melville SB; Gunsalus RP J Biol Chem; 1990 Nov; 265(31):18733-6. PubMed ID: 2229038 [TBL] [Abstract][Full Text] [Related]
47. Anaerobic expression of Escherichia coli succinate dehydrogenase: functional replacement of fumarate reductase in the respiratory chain during anaerobic growth. Maklashina E; Berthold DA; Cecchini G J Bacteriol; 1998 Nov; 180(22):5989-96. PubMed ID: 9811659 [TBL] [Abstract][Full Text] [Related]
48. Phenotypic restoration by molybdate of nitrate reductase activity in chlD mutants of Escherichia coli. Glaser JH; DeMoss JA J Bacteriol; 1971 Nov; 108(2):854-60. PubMed ID: 4942767 [TBL] [Abstract][Full Text] [Related]
49. The anaerobic oxidation of dihydroorotate by Escherichia coli K-12. Andrews S; Cox GB; Gibson F Biochim Biophys Acta; 1977 Oct; 462(1):153-60. PubMed ID: 199252 [TBL] [Abstract][Full Text] [Related]
50. Proton translocation coupled to electron flow from endogenous substrates to fumarate in anaerobically grown Escherichia coli K12. Gutowski SJ; Rosenberg H Biochem J; 1977 Apr; 164(1):265-7. PubMed ID: 18144 [TBL] [Abstract][Full Text] [Related]
51. Transcription of the Escherichia coli fumarate reductase genes (frdABCD) and their coordinate regulation by oxygen, nitrate, and fumarate. Jones HM; Gunsalus RP J Bacteriol; 1985 Dec; 164(3):1100-9. PubMed ID: 2999070 [TBL] [Abstract][Full Text] [Related]
52. Mutations in the Escherichia coli fnr and tgt genes: control of molybdate reductase activity and the cytochrome d complex by fnr. Frey B; Jänel G; Michelsen U; Kersten H J Bacteriol; 1989 Mar; 171(3):1524-30. PubMed ID: 2537821 [TBL] [Abstract][Full Text] [Related]
53. FUMARATE REDUCTION AND ITS ROLE IN THE DIVERSION OF GLUCOSE FERMENTATION BY STREPTOCOCCUS FAECALIS. DEIBEL RH; KVETKAS MJ J Bacteriol; 1964 Oct; 88(4):858-64. PubMed ID: 14219047 [TBL] [Abstract][Full Text] [Related]
54. Two membrane anchors of Wolinella succinogenes hydrogenase and their function in fumarate and polysulfide respiration. Gross R; Simon J; Theis F; Kröger A Arch Microbiol; 1998 Jul; 170(1):50-8. PubMed ID: 9639603 [TBL] [Abstract][Full Text] [Related]
55. Anaerobic transport of amino acids coupled to the glycerol-3-phosphate-fumarate oxidoreductase system in a cytochrome-deficient mutant of Escherichia coli. Singh AP; Bragg PD Biochim Biophys Acta; 1976 Mar; 423(3):450-61. PubMed ID: 130924 [TBL] [Abstract][Full Text] [Related]
56. Bioenergetic State of Escherichia coli Controls Aminoglycoside Susceptibility. El Khoury JY; Zamarreño Beas J; Huguenot A; Py B; Barras F mBio; 2023 Feb; 14(1):e0330222. PubMed ID: 36625597 [TBL] [Abstract][Full Text] [Related]
57. Isolation and characterization of a transposon mutant of Shewanella putrefaciens MR-1 deficient in fumarate reductase. Myers CR; Myers JM Lett Appl Microbiol; 1997 Sep; 25(3):162-8. PubMed ID: 9351256 [TBL] [Abstract][Full Text] [Related]
58. Salmonella typhi mutants defective in anaerobic respiration are impaired in their ability to replicate within epithelial cells. Contreras I; Toro CS; Troncoso G; Mora GC Microbiology (Reading); 1997 Aug; 143 ( Pt 8)():2665-2672. PubMed ID: 9274020 [TBL] [Abstract][Full Text] [Related]
59. Pathways of energy metabolism required for phenotypic expression of nif+Kp genes in Escherichia coli. Skotnicki ML; Rolfe BG Aust J Biol Sci; 1979 Dec; 32(6):637-49. PubMed ID: 398694 [TBL] [Abstract][Full Text] [Related]
60. Pyruvate formate-lyase is not essential for nitrate respiration by Escherichia coli. Kaiser M; Sawers G FEMS Microbiol Lett; 1994 Apr; 117(2):163-8. PubMed ID: 8181719 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]