These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 7964401)

  • 81. Sodium-coupled taurocholate transport in the proximal convolution of the rat kidney in vivo and in vitro.
    Wilson FA; Burckhardt G; Murer H; Rumrich G; Ullrich KJ
    J Clin Invest; 1981 Apr; 67(4):1141-50. PubMed ID: 7204571
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Expression of a midgut-specific cadherin BT-R1 during the development of Manduca sexta larva.
    Midboe EG; Candas M; Bulla LA
    Comp Biochem Physiol B Biochem Mol Biol; 2003 May; 135(1):125-37. PubMed ID: 12781980
    [TBL] [Abstract][Full Text] [Related]  

  • 83. A new prenylated flavone from Artocarpus champeden inhibits the K(+)-dependent amino acid transport in Bombyx mori midgut.
    Parenti P; Pizzigoni A; Hanozet G; Hakim EH; Makmur L; Achmad SA; Giordana B
    Biochem Biophys Res Commun; 1998 Mar; 244(2):445-8. PubMed ID: 9514951
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Mechanism of Cl- transport in eel intestinal brush-border membrane vesicles.
    De Giorgi A; Carnimeo L; Corcelli A
    Pflugers Arch; 1992 Apr; 420(5-6):551-8. PubMed ID: 1614830
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Na-dependent L-glutamate transport by eel intestinal BBMV: role of K+ and Cl-.
    Romano PM; Ahearn GA; Storelli C
    Am J Physiol; 1989 Jul; 257(1 Pt 2):R180-8. PubMed ID: 2568760
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Mechanism of urate and p-aminohippurate transport in rat renal microvillus membrane vesicles.
    Kahn AM; Branham S; Weinman EJ
    Am J Physiol; 1983 Aug; 245(2):F151-8. PubMed ID: 6309010
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Cation-dependent nutrient transport in shrimp digestive tract.
    Simmons T; Mozo J; Wilson J; Ahearn GA
    J Comp Physiol B; 2012 Feb; 182(2):209-16. PubMed ID: 21983793
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Na+ and H+ gradient-dependent transport of p-aminohippurate in membrane vesicles from dog kidney cortex.
    Russel FG; van der Linden PE; Vermeulen WG; Heijn M; van Os CH; van Ginneken CA
    Biochem Pharmacol; 1988 Jul; 37(13):2639-49. PubMed ID: 3390224
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Active transport of taurine in rabbit jejunal brush-border membrane vesicles.
    Miyamoto Y; Tiruppathi C; Ganapathy V; Leibach FH
    Am J Physiol; 1989 Jul; 257(1 Pt 1):G65-72. PubMed ID: 2750911
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Differential inhibition by Bacillus thuringiensis delta endotoxin of leucine and aspartic acid uptake into BBMV from midgut of Manduca sexta.
    Reuveni M; Dunn PE
    Biochem Biophys Res Commun; 1991 Dec; 181(3):1089-93. PubMed ID: 1662492
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Chloride and membrane potential dependence of sodium ion-proline symport.
    Chesney RW; Zelikovic I; Budreau A; Randle D
    J Am Soc Nephrol; 1991 Oct; 2(4):885-93. PubMed ID: 1751792
    [TBL] [Abstract][Full Text] [Related]  

  • 92. The kinetic mechanism of the glutamate-aspartate carrier in rat intestinal brush-border membrane vesicles: the role of potassium.
    Scalera V; Mola MG; Prezioso G
    J Bioenerg Biomembr; 2002 Apr; 34(2):95-103. PubMed ID: 12018893
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Taurocholate--sodium co-transport by brush-border membrane vesicles isolated from rat ileum.
    Lücke H; Stange G; Kinne R; Murer H
    Biochem J; 1978 Sep; 174(3):951-8. PubMed ID: 581553
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Sequential ordered mechanism for the sodium-glutamate transport in intestinal brush border membrane vesicles.
    Prezioso G; Scalera V
    Biochim Biophys Acta; 1996 Mar; 1279(2):144-8. PubMed ID: 8603080
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Protease inhibitors fail to prevent pore formation by the activated Bacillus thuringiensis toxin Cry1Aa in insect brush border membrane vesicles.
    Kirouac M; Vachon V; Quievy D; Schwartz JL; Laprade R
    Appl Environ Microbiol; 2006 Jan; 72(1):506-15. PubMed ID: 16391085
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Hydrogen ion cotransport by the renal brush border glutamate transporter.
    Nelson PJ; Dean GE; Aronson PS; Rudnick G
    Biochemistry; 1983 Nov; 22(23):5459-63. PubMed ID: 6140027
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Tetraethylammonium transport in renal brush border membrane vesicles of the rabbit.
    Rafizadeh C; Roch-Ramel F; Schäli C
    J Pharmacol Exp Ther; 1987 Jan; 240(1):308-13. PubMed ID: 3806393
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Evidence for an organic cation-proton antiport system in brush-border membranes isolated from the human term placenta.
    Ganapathy V; Ganapathy ME; Nair CN; Mahesh VB; Leibach FH
    J Biol Chem; 1988 Apr; 263(10):4561-8. PubMed ID: 3350804
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Chloride transport across rat ileal basolateral membrane vesicles.
    Daher M; Acra S; Dykes W; Ghishan FK
    Proc Soc Exp Biol Med; 1992 Dec; 201(3):254-60. PubMed ID: 1438341
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Prostaglandin biosynthesis by midgut tissue isolated from the tobacco hornworm, Manduca sexta.
    Büyükgüzel K; Tunaz H; Putnam SM; Stanley D
    Insect Biochem Mol Biol; 2002 Apr; 32(4):435-43. PubMed ID: 11886778
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.