These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

368 related articles for article (PubMed ID: 7964925)

  • 1. The development of a simple empirical scoring function to estimate the binding constant for a protein-ligand complex of known three-dimensional structure.
    Böhm HJ
    J Comput Aided Mol Des; 1994 Jun; 8(3):243-56. PubMed ID: 7964925
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of binding constants of protein ligands: a fast method for the prioritization of hits obtained from de novo design or 3D database search programs.
    Böhm HJ
    J Comput Aided Mol Des; 1998 Jul; 12(4):309-23. PubMed ID: 9777490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Empirical scoring functions: I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes.
    Eldridge MD; Murray CW; Auton TR; Paolini GV; Mee RP
    J Comput Aided Mol Des; 1997 Sep; 11(5):425-45. PubMed ID: 9385547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Further development and validation of empirical scoring functions for structure-based binding affinity prediction.
    Wang R; Lai L; Wang S
    J Comput Aided Mol Des; 2002 Jan; 16(1):11-26. PubMed ID: 12197663
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An electronic environment and contact direction sensitive scoring function for predicting affinities of protein-ligand complexes in Contour(®).
    Lindblom PR; Wu G; Liu Z; Jim KC; Baldwin JJ; Gregg RE; Claremon DA; Singh SB
    J Mol Graph Model; 2014 Sep; 53():118-127. PubMed ID: 25123650
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient Approximation of Ligand Rotational and Translational Entropy Changes upon Binding for Use in MM-PBSA Calculations.
    Ben-Shalom IY; Pfeiffer-Marek S; Baringhaus KH; Gohlke H
    J Chem Inf Model; 2017 Feb; 57(2):170-189. PubMed ID: 27996253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A general and fast scoring function for protein-ligand interactions: a simplified potential approach.
    Muegge I; Martin YC
    J Med Chem; 1999 Mar; 42(5):791-804. PubMed ID: 10072678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PEARLS: program for energetic analysis of receptor-ligand system.
    Han LY; Lin HH; Li ZR; Zheng CJ; Cao ZW; Xie B; Chen YZ
    J Chem Inf Model; 2006; 46(1):445-50. PubMed ID: 16426079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PSI-DOCK: towards highly efficient and accurate flexible ligand docking.
    Pei J; Wang Q; Liu Z; Li Q; Yang K; Lai L
    Proteins; 2006 Mar; 62(4):934-46. PubMed ID: 16395666
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energetic and entropic factors determining binding affinity in protein-ligand complexes.
    Klebe G; Böhm HJ
    J Recept Signal Transduct Res; 1997; 17(1-3):459-73. PubMed ID: 9029508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimating protein-ligand binding free energy: atomic solvation parameters for partition coefficient and solvation free energy calculation.
    Pei J; Wang Q; Zhou J; Lai L
    Proteins; 2004 Dec; 57(4):651-64. PubMed ID: 15390269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes.
    Friesner RA; Murphy RB; Repasky MP; Frye LL; Greenwood JR; Halgren TA; Sanschagrin PC; Mainz DT
    J Med Chem; 2006 Oct; 49(21):6177-96. PubMed ID: 17034125
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting binding affinities of protein ligands from three-dimensional models: application to peptide binding to class I major histocompatibility proteins.
    Rognan D; Lauemoller SL; Holm A; Buus S; Tschinke V
    J Med Chem; 1999 Nov; 42(22):4650-8. PubMed ID: 10579827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Specific empirical free energy function for automated docking of carbohydrates to proteins.
    Laederach A; Reilly PJ
    J Comput Chem; 2003 Nov; 24(14):1748-57. PubMed ID: 12964193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel computational tool for automated structure-based drug design.
    Böhm HJ
    J Mol Recognit; 1993 Sep; 6(3):131-7. PubMed ID: 8060670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermodynamics of water mediating protein-ligand interactions in cytochrome P450cam: a molecular dynamics study.
    Helms V; Wade RC
    Biophys J; 1995 Sep; 69(3):810-24. PubMed ID: 8519982
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical study of the discrimination between O(2) and CO by myoglobin.
    Sigfridsson E; Ryde U
    J Inorg Biochem; 2002 Jul; 91(1):101-15. PubMed ID: 12121767
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The hydrogen bonding and hydration of 2'-OH in adenosine and adenosine 3'-ethyl phosphate.
    Acharya P; Chattopadhyaya J
    J Org Chem; 2002 Mar; 67(6):1852-65. PubMed ID: 11895403
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ligand Identification Scoring Algorithm (LISA).
    Zheng Z; Merz KM
    J Chem Inf Model; 2011 Jun; 51(6):1296-306. PubMed ID: 21561101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Definition and display of steric, hydrophobic, and hydrogen-bonding properties of ligand binding sites in proteins using Lee and Richards accessible surface: validation of a high-resolution graphical tool for drug design.
    Bohacek RS; McMartin C
    J Med Chem; 1992 May; 35(10):1671-84. PubMed ID: 1588550
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.