These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

648 related articles for article (PubMed ID: 7965013)

  • 1. Rapid adaptation to Coriolis force perturbations of arm trajectory.
    Lackner JR; Dizio P
    J Neurophysiol; 1994 Jul; 72(1):299-313. PubMed ID: 7965013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Motor adaptation to Coriolis force perturbations of reaching movements: endpoint but not trajectory adaptation transfers to the nonexposed arm.
    Dizio P; Lackner JR
    J Neurophysiol; 1995 Oct; 74(4):1787-92. PubMed ID: 8989414
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coriolis-force-induced trajectory and endpoint deviations in the reaching movements of labyrinthine-defective subjects.
    DiZio P; Lackner JR
    J Neurophysiol; 2001 Feb; 85(2):784-9. PubMed ID: 11160512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reaching during virtual rotation: context specific compensations for expected coriolis forces.
    Cohn JV; DiZio P; Lackner JR
    J Neurophysiol; 2000 Jun; 83(6):3230-40. PubMed ID: 10848543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gravitoinertial force background level affects adaptation to coriolis force perturbations of reaching movements.
    Lackner JR; Dizio P
    J Neurophysiol; 1998 Aug; 80(2):546-53. PubMed ID: 9705449
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coordinated turn-and-reach movements. I. Anticipatory compensation for self-generated coriolis and interaction torques.
    Pigeon P; Bortolami SB; DiZio P; Lackner JR
    J Neurophysiol; 2003 Jan; 89(1):276-89. PubMed ID: 12522179
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Congenitally blind individuals rapidly adapt to coriolis force perturbations of their reaching movements.
    DiZio P; Lackner JR
    J Neurophysiol; 2000 Oct; 84(4):2175-80. PubMed ID: 11024106
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptation in a rotating artificial gravity environment.
    Lackner JR; DiZio P
    Brain Res Brain Res Rev; 1998 Nov; 28(1-2):194-202. PubMed ID: 9795214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptation to Coriolis force perturbation of movement trajectory; role of proprioceptive and cutaneous somatosensory feedback.
    Lackner JR; DiZio P
    Adv Exp Med Biol; 2002; 508():69-78. PubMed ID: 12171153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vestibular contribution to the planning of reach trajectories.
    Bockisch CJ; Haslwanter T
    Exp Brain Res; 2007 Sep; 182(3):387-97. PubMed ID: 17562026
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid adaptation to Coriolis force perturbations of voluntary body sway.
    Bakshi A; DiZio P; Lackner JR
    J Neurophysiol; 2019 Jun; 121(6):2028-2041. PubMed ID: 30943090
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic analysis of arm reaching movements during voluntary and passive rotation of the torso.
    Bortolami SB; Pigeon P; Dizio P; Lackner JR
    Exp Brain Res; 2008 Jun; 187(4):509-23. PubMed ID: 18330550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of interaction force levels on degree of motor adaptation in a stable dynamic force field.
    Lai EJ; Hodgson AJ; Milner TE
    Exp Brain Res; 2003 Nov; 153(1):76-83. PubMed ID: 12955384
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensorimotor aspects of high-speed artificial gravity: III. Sensorimotor adaptation.
    DiZio P; Lackner JR
    J Vestib Res; 2002-2003; 12(5-6):291-9. PubMed ID: 14501105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptation to Coriolis perturbations of voluntary body sway transfers to preprogrammed fall-recovery behavior.
    Bakshi A; Ventura J; DiZio P; Lackner JR
    J Neurophysiol; 2014 Mar; 111(5):977-83. PubMed ID: 24304863
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immediate compensation for variations in self-generated Coriolis torques related to body dynamics and carried objects.
    Pigeon P; Dizio P; Lackner JR
    J Neurophysiol; 2013 Sep; 110(6):1370-84. PubMed ID: 23803330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptation to Coriolis force perturbations of postural sway requires an asymmetric two-leg model.
    Bakshi A; DiZio P; Lackner JR
    J Neurophysiol; 2019 Jun; 121(6):2042-2060. PubMed ID: 30943111
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visual feedback of the moving arm allows complete adaptation of pointing movements to centrifugal and Coriolis forces in human subjects.
    Bourdin C; Gauthier G; Blouin J; Vercher JL
    Neurosci Lett; 2001 Mar; 301(1):25-8. PubMed ID: 11239708
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vision of the hand prior to movement onset allows full motor adaptation to a multi-force environment.
    Bourdin C; Bringoux L; Gauthier GM; Vercher JL
    Brain Res Bull; 2006 Dec; 71(1-3):101-10. PubMed ID: 17113935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Moving objects in a rotating environment: rapid prediction of Coriolis and centrifugal force perturbations.
    Nowak DA; Hermsdörfer J; Schneider E; Glasauer S
    Exp Brain Res; 2004 Jul; 157(2):241-54. PubMed ID: 15064877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.