These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 7965031)

  • 21. Bidirectional synaptic transmission in Necturus taste buds.
    Ewald DA; Roper SD
    J Neurosci; 1994 Jun; 14(6):3791-804. PubMed ID: 8207488
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ionic mechanisms for the subthreshold oscillations and differential electroresponsiveness of medial entorhinal cortex layer II neurons.
    Klink R; Alonso A
    J Neurophysiol; 1993 Jul; 70(1):144-57. PubMed ID: 7689647
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Postnatal development of membrane excitability in taste cells of the mouse vallate papilla.
    Bigiani A; Cristiani R; Fieni F; Ghiaroni V; Bagnoli P; Pietra P
    J Neurosci; 2002 Jan; 22(2):493-504. PubMed ID: 11784795
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ca2+-activated Cl- channel currents in rat ventral prostate epithelial cells.
    Kim SJ; Shin SY; Lee JE; Kim JH; Uhm DY
    Prostate; 2003 May; 55(2):118-27. PubMed ID: 12661037
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Distribution of ion channels on taste cells and its relationship to chemosensory transduction.
    Roper SD; McBride DW
    J Membr Biol; 1989 Jul; 109(1):29-39. PubMed ID: 2475632
    [TBL] [Abstract][Full Text] [Related]  

  • 26. GABAB receptor activation causes a depression of low- and high-voltage-activated Ca2+ currents, postinhibitory rebound, and postspike afterhyperpolarization in lamprey neurons.
    Matsushima T; Tegnér J; Hill RH; Grillner S
    J Neurophysiol; 1993 Dec; 70(6):2606-19. PubMed ID: 8120601
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Properties of Na(+)-dependent K+ conductance in the apical membrane of frog taste cells.
    Miyamoto T; Fujiyama R; Okada Y; Sato T
    Brain Res; 1996 Apr; 715(1-2):79-85. PubMed ID: 8739625
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bradykinin decreases K(+) and increases Cl(-) conductances in vagal afferent neurones of the guinea pig.
    Oh EJ; Weinreich D
    J Physiol; 2004 Jul; 558(Pt 2):513-26. PubMed ID: 15169850
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Membrane properties of two types of basal cells in Necturus taste buds.
    Delay RJ; Mackay-Sim A; Roper SD
    J Neurosci; 1994 Oct; 14(10):6132-43. PubMed ID: 7931567
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Whole-cell analysis of ionic currents underlying the firing pattern of neurons in the gustatory zone of the nucleus tractus solitarii.
    Tell F; Bradley RM
    J Neurophysiol; 1994 Feb; 71(2):479-92. PubMed ID: 7513751
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Contribution of the low-threshold T-type calcium current in generating the post-spike depolarizing afterpotential in dentate granule neurons of immature rats.
    Zhang L; Valiante TA; Carlen PL
    J Neurophysiol; 1993 Jul; 70(1):223-31. PubMed ID: 8395576
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synaptic and synaptically activated intrinsic conductances underlie inhibitory potentials in cat lateral amygdaloid projection neurons in vivo.
    Lang EJ; Paré D
    J Neurophysiol; 1997 Jan; 77(1):353-63. PubMed ID: 9120576
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Participation of a chloride conductance in the subthreshold behavior of the rat sympathetic neuron.
    Sacchi O; Rossi ML; Canella R; Fesce R
    J Neurophysiol; 1999 Oct; 82(4):1662-75. PubMed ID: 10515957
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Apical localization of K+ channels in taste cells provides the basis for sour taste transduction.
    Kinnamon SC; Dionne VE; Beam KG
    Proc Natl Acad Sci U S A; 1988 Sep; 85(18):7023-7. PubMed ID: 2457924
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of potassium and chloride channels in the basolateral membrane of bovine nonpigmented ciliary epithelial cells.
    Edelman JL; Loo DD; Sachs G
    Invest Ophthalmol Vis Sci; 1995 Dec; 36(13):2706-16. PubMed ID: 7499093
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrophysiological characterization of a putative supporting cell isolated from the frog taste disk.
    Bigiani A; Sbarbati A; Osculati F; Pietra P
    J Neurosci; 1998 Jul; 18(14):5136-50. PubMed ID: 9651197
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of anion channel antagonists in canine colonic myocytes: comparative pharmacology of Cl-, Ca2+ and K+ currents.
    Dick GM; Kong ID; Sanders KM
    Br J Pharmacol; 1999 Aug; 127(8):1819-31. PubMed ID: 10482912
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Parapodial swim muscle in Aplysia brasiliana. II. Ca(2+)-dependent K+ currents in isolated muscle fibers and their blockade by chloride substitutes.
    Laurienti PJ; Blankenship JE
    J Neurophysiol; 1996 Sep; 76(3):1531-9. PubMed ID: 8890272
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Intercellular signaling in Necturus taste buds: chemical excitation of receptor cells elicits responses in basal cells.
    Ewald DA; Roper SD
    J Neurophysiol; 1992 May; 67(5):1316-24. PubMed ID: 1597715
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Receptor potential of the frog taste cell in response to bitter stimuli.
    Sato T; Okada Y; Miyamoto T
    Physiol Behav; 1994 Dec; 56(6):1133-9. PubMed ID: 7878082
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.