These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 7965103)

  • 1. Receptive field analysis and orientation selectivity of postsynaptic potentials of simple cells in cat visual cortex.
    Pei X; Vidyasagar TR; Volgushev M; Creutzfeldt OD
    J Neurosci; 1994 Nov; 14(11 Pt 2):7130-40. PubMed ID: 7965103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Orientation selectivity of synaptic potentials in neurons of cat primary visual cortex.
    Ferster D
    J Neurosci; 1986 May; 6(5):1284-301. PubMed ID: 3711980
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Excitation and inhibition in orientation selectivity of cat visual cortex neurons revealed by whole-cell recordings in vivo.
    Volgushev M; Pei X; Vidyasagar TR; Creutzfeldt OD
    Vis Neurosci; 1993; 10(6):1151-5. PubMed ID: 8257670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics of the orientation tuning of postsynaptic potentials in the cat visual cortex.
    Volgushev M; Vidyasagar TR; Pei X
    Vis Neurosci; 1995; 12(4):621-8. PubMed ID: 8527364
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direction selectivity of synaptic potentials in simple cells of the cat visual cortex.
    Jagadeesh B; Wheat HS; Kontsevich LL; Tyler CW; Ferster D
    J Neurophysiol; 1997 Nov; 78(5):2772-89. PubMed ID: 9356425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A detailed model of the primary visual pathway in the cat: comparison of afferent excitatory and intracortical inhibitory connection schemes for orientation selectivity.
    Wörgötter F; Koch C
    J Neurosci; 1991 Jul; 11(7):1959-79. PubMed ID: 2066770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A linear model fails to predict orientation selectivity of cells in the cat visual cortex.
    Volgushev M; Vidyasagar TR; Pei X
    J Physiol; 1996 Nov; 496 ( Pt 3)(Pt 3):597-606. PubMed ID: 8930828
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Response characteristics of the cells of cortical area 21a of the cat with special reference to orientation specificity.
    Wimborne BM; Henry GH
    J Physiol; 1992 Apr; 449():457-78. PubMed ID: 1522518
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Origin of orientation-selective EPSPs in simple cells of cat visual cortex.
    Ferster D
    J Neurosci; 1987 Jun; 7(6):1780-91. PubMed ID: 3598648
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Orientation tuning of input conductance, excitation, and inhibition in cat primary visual cortex.
    Anderson JS; Carandini M; Ferster D
    J Neurophysiol; 2000 Aug; 84(2):909-26. PubMed ID: 10938316
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Receptive fields of simple cells in the cat striate cortex.
    Bishop PO; Coombs JS; Henry GH
    J Physiol; 1973 May; 231(1):31-60. PubMed ID: 4715359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contrast-invariant orientation tuning in cat visual cortex: thalamocortical input tuning and correlation-based intracortical connectivity.
    Troyer TW; Krukowski AE; Priebe NJ; Miller KD
    J Neurosci; 1998 Aug; 18(15):5908-27. PubMed ID: 9671678
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Orientation tuning of surround suppression in lateral geniculate nucleus and primary visual cortex of cat.
    Naito T; Sadakane O; Okamoto M; Sato H
    Neuroscience; 2007 Nov; 149(4):962-75. PubMed ID: 17945429
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The contribution of inhibitory mechanisms to the receptive field properties of neurones in the striate cortex of the cat.
    Sillito AM
    J Physiol; 1975 Sep; 250(2):305-29. PubMed ID: 1177144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synaptic Basis for Differential Orientation Selectivity between Complex and Simple Cells in Mouse Visual Cortex.
    Li YT; Liu BH; Chou XL; Zhang LI; Tao HW
    J Neurosci; 2015 Aug; 35(31):11081-93. PubMed ID: 26245969
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intracellular,
    Sedigh-Sarvestani M; Vigeland L; Fernandez-Lamo I; Taylor MM; Palmer LA; Contreras D
    J Neurosci; 2017 May; 37(21):5250-5262. PubMed ID: 28438969
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Receptive-field properties of neurons in middle temporal visual area (MT) of owl monkeys.
    Felleman DJ; Kaas JH
    J Neurophysiol; 1984 Sep; 52(3):488-513. PubMed ID: 6481441
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intracellular analysis of directional sensitivity of tectal neurons of the frog.
    Hoshino N; Matsumoto N
    Brain Res; 2003 Mar; 966(2):185-93. PubMed ID: 12618342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synaptic Contributions to Receptive Field Structure and Response Properties in the Rodent Lateral Geniculate Nucleus of the Thalamus.
    Suresh V; Çiftçioğlu UM; Wang X; Lala BM; Ding KR; Smith WA; Sommer FT; Hirsch JA
    J Neurosci; 2016 Oct; 36(43):10949-10963. PubMed ID: 27798177
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Orientation selectivity and the spatial distribution of enhancement and suppression in receptive fields of cat striate cortex cells.
    Heggelund P; Moors J
    Exp Brain Res; 1983; 52(2):235-47. PubMed ID: 6641885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.