These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 7965819)

  • 1. Further studies on the relationship between dopamine cell density and haloperidol-induced catalepsy.
    Hitzemann B; Dains K; Kanes S; Hitzemann R
    J Pharmacol Exp Ther; 1994 Nov; 271(2):969-76. PubMed ID: 7965819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dopamine and acetylcholine cell density in the neuroleptic responsive (NR) and neuroleptic nonresponsive (NNR) lines of mice.
    Hitzemann R; Qian Y; Hitzemann B
    J Pharmacol Exp Ther; 1993 Jul; 266(1):431-8. PubMed ID: 8101223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetics, neuroleptic response and the organization of cholinergic neurons in the mouse striatum.
    Dains K; Hitzemann B; Hitzemann R
    J Pharmacol Exp Ther; 1996 Dec; 279(3):1430-8. PubMed ID: 8968368
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mapping the genes for haloperidol-induced catalepsy.
    Kanes S; Dains K; Cipp L; Gatley J; Hitzemann B; Rasmussen E; Sanderson S; Silverman M; Hitzemann R
    J Pharmacol Exp Ther; 1996 May; 277(2):1016-25. PubMed ID: 8627512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dopamine D2 receptor binding, Drd2 expression and the number of dopamine neurons in the BXD recombinant inbred series: genetic relationships to alcohol and other drug associated phenotypes.
    Hitzemann R; Hitzemann B; Rivera S; Gatley J; Thanos P; Shou LL; Williams RW
    Alcohol Clin Exp Res; 2003 Jan; 27(1):1-11. PubMed ID: 12543998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of quantitative trait loci for haloperidol-induced catalepsy on mouse chromosome 14.
    Rasmussen E; Cipp L; Hitzemann R
    J Pharmacol Exp Ther; 1999 Sep; 290(3):1337-46. PubMed ID: 10454512
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the relationship between D2 receptor density and neuroleptic-induced catalepsy among eight inbred strains of mice.
    Kanes SJ; Hitzemann BA; Hitzemann RJ
    J Pharmacol Exp Ther; 1993 Oct; 267(1):538-47. PubMed ID: 7901398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. D1 and D2 dopamine receptor turnover and D2 messenger RNA levels in the neuroleptic-responsive and the neuroleptic nonresponsive lines of mice.
    Qian Y; Hitzemann B; Yount GL; White JD; Hitzemann R
    J Pharmacol Exp Ther; 1993 Dec; 267(3):1582-90. PubMed ID: 7903394
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sporadic midbrain dopamine neuron abnormalities in laboratory mice.
    Prasad K; Richfield EK
    Neurobiol Dis; 2008 Nov; 32(2):262-72. PubMed ID: 18687402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tyrosine hydroxylase and dopamine transporter expression following 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurodegeneration of the mouse nigrostriatal pathway.
    Jakowec MW; Nixon K; Hogg E; McNeill T; Petzinger GM
    J Neurosci Res; 2004 May; 76(4):539-50. PubMed ID: 15114626
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic determination of mesencephalic tyrosine hydroxylase activity in the mouse.
    Vadász C; Sziráki I; Murthy LR; Vadász I; Badalamenti AF; Kóbor G; Lajtha A
    J Neurogenet; 1987 Aug; 4(5):241-52. PubMed ID: 2889816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Search for the presence of glucocorticoid receptors in dopaminergic neurons of rat ventral tegmental area and substantia nigra.
    Czyrak A; Chocyk A
    Pol J Pharmacol; 2001; 53(6):681-4. PubMed ID: 11985346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of VTA dopamine neuron activity in lines of rats selectively bred to prefer or avoid alcohol.
    Morzorati SL; Marunde RL
    Alcohol Clin Exp Res; 2006 Jun; 30(6):991-7. PubMed ID: 16737457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiological properties of zebra finch ventral tegmental area and substantia nigra pars compacta neurons.
    Gale SD; Perkel DJ
    J Neurophysiol; 2006 Nov; 96(5):2295-306. PubMed ID: 16870835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential effects of glial cell line-derived neurotrophic factor on A9 and A10 dopamine neuron survival in vitro.
    Borgal L; Hong M; Sadi D; Mendez I
    Neuroscience; 2007 Jul; 147(3):712-9. PubMed ID: 17583436
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genotype differences in behavior and tyrosine hydroxylase expression between wild-type and progesterone receptor knockout mice.
    Woolley SC; O'Malley B; Lydon J; Crews D
    Behav Brain Res; 2006 Feb; 167(2):197-204. PubMed ID: 16413068
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential modulation by nicotine of substantia nigra versus ventral tegmental area dopamine neurons.
    Keath JR; Iacoviello MP; Barrett LE; Mansvelder HD; McGehee DS
    J Neurophysiol; 2007 Dec; 98(6):3388-96. PubMed ID: 17942622
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SK channel function regulates the dopamine phenotype of neurons in the substantia nigra pars compacta.
    Aumann TD; Gantois I; Egan K; Vais A; Tomas D; Drago J; Horne MK
    Exp Neurol; 2008 Oct; 213(2):419-30. PubMed ID: 18680743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Response of tyrosine hydroxylase and GTP cyclohydrolase I gene expression to estrogen in brain catecholaminergic regions varies with mode of administration.
    Serova LI; Maharjan S; Huang A; Sun D; Kaley G; Sabban EL
    Brain Res; 2004 Jul; 1015(1-2):1-8. PubMed ID: 15223360
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dopamine cell morphology and glial cell hypertrophy and process branching in the nigrostriatal system after striatal 6-OHDA analyzed by specific sterological tools.
    Gomide V; Bibancos T; Chadi G
    Int J Neurosci; 2005 Apr; 115(4):557-82. PubMed ID: 15804725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.