BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

435 related articles for article (PubMed ID: 7965828)

  • 1. The upregulation of acetylcholine release at endplates of alpha-bungarotoxin-treated rats: its dependency on calcium.
    Plomp JJ; van Kempen GT; Molenaar PC
    J Physiol; 1994 Jul; 478 ( Pt 1)(Pt 1):125-36. PubMed ID: 7965828
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Involvement of protein kinases in the upregulation of acetylcholine release at endplates of alpha-bungarotoxin-treated rats.
    Plomp JJ; Molenaar PC
    J Physiol; 1996 May; 493 ( Pt 1)(Pt 1):175-86. PubMed ID: 8735703
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptation of quantal content to decreased postsynaptic sensitivity at single endplates in alpha-bungarotoxin-treated rats.
    Plomp JJ; van Kempen GT; Molenaar PC
    J Physiol; 1992 Dec; 458():487-99. PubMed ID: 1302275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcium channels coupled to neurotransmitter release at neonatal rat neuromuscular junctions.
    Rosato Siri MD; Uchitel OD
    J Physiol; 1999 Jan; 514 ( Pt 2)(Pt 2):533-40. PubMed ID: 9852333
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nicotinic antagonist-produced frequency-dependent changes in acetylcholine release from rat motor nerve terminals.
    Tian L; Prior C; Dempster J; Marshall IG
    J Physiol; 1994 May; 476(3):517-29. PubMed ID: 7914535
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of alpha-bungarotoxin on transmitter release at the neuromuscular junction of the rat.
    Domet MA; Webb CE; Wilson DF
    Neurosci Lett; 1995 Oct; 199(1):49-52. PubMed ID: 8584224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Organic calcium channel antagonists provoke acetylcholine receptor autodesensitization on train stimulation of motor nerve.
    Chang CC; Huang CY; Hong SJ
    Neuroscience; 1990; 38(3):731-42. PubMed ID: 2125333
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition by neosurugatoxin and omega-conotoxin of acetylcholine release and muscle and neuronal nicotinic receptors in mouse neuromuscular junction.
    Hong SJ; Tsuji K; Chang CC
    Neuroscience; 1992; 48(3):727-35. PubMed ID: 1318519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tetanic failure due to decreased endogenous adenosine A(2A) tonus operating neuronal Ca(v) 1 (L-type) influx in Myasthenia gravis.
    Noronha-Matos JB; Morais T; Trigo D; Timóteo MA; Magalhães-Cardoso MT; Oliveira L; Correia-de-Sá P
    J Neurochem; 2011 Jun; 117(5):797-811. PubMed ID: 21323926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hexamethonium- and methyllycaconitine-induced changes in acetylcholine release from rat motor nerve terminals.
    Tian L; Prior C; Dempster J; Marshall IG
    Br J Pharmacol; 1997 Nov; 122(6):1025-34. PubMed ID: 9401765
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spontaneous activity at long-term silenced synapses in rat muscle.
    Gundersen K
    J Physiol; 1990 Nov; 430():399-418. PubMed ID: 1707969
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium channels coupled to neurotransmitter release at dually innervated neuromuscular junctions in the newborn rat.
    Santafé MM; Garcia N; Lanuza MA; Uchitel OD; Tomás J
    Neuroscience; 2001; 102(3):697-708. PubMed ID: 11226706
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in MEPP frequency during depression of evoked release at the frog neuromuscular junction.
    Zengel JE; Sosa MA
    J Physiol; 1994 Jun; 477(Pt 2):267-77. PubMed ID: 7932218
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiplicative and additive Ca(2+)-dependent components of facilitation at mouse endplates.
    Bain AI; Quastel DM
    J Physiol; 1992 Sep; 455():383-405. PubMed ID: 1484358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physiological and regenerative acetylcholine release from motor nerve: differential inhibitions by vesamicol and omega-agatoxin IVA.
    Hong SJ; Lee SH; Chang CC
    Neuroscience; 1995 Jul; 67(1):169-75. PubMed ID: 7477897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of L- and N-type Ca2+ channels in muscarinic receptor-mediated facilitation of ACh and noradrenaline release in the rat urinary bladder.
    Somogyi GT; Zernova GV; Tanowitz M; de Groat WC
    J Physiol; 1997 Mar; 499 ( Pt 3)(Pt 3):645-54. PubMed ID: 9130161
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of Ca2+ channel blockers on transmitter release and presynaptic currents at the frog neuromuscular junction.
    Katz E; Ferro PA; Cherksey BD; Sugimori M; Llinás R; Uchitel OD
    J Physiol; 1995 Aug; 486 ( Pt 3)(Pt 3):695-706. PubMed ID: 7473230
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of carbachol and alpha-bungarotoxin on the frequency of miniature endplate potentials at the frog neuromuscular junction.
    Bukharaeva E; Ipatova T; Nikolsky EE; Vyskocil F
    Exp Physiol; 2000 Mar; 85(2):125-31. PubMed ID: 10751508
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of acetylcholine release from mouse motor nerve by a P-type calcium channel blocker, omega-agatoxin IVA.
    Hong SJ; Chang CC
    J Physiol; 1995 Jan; 482 ( Pt 2)(Pt 2):283-90. PubMed ID: 7714822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Apparent lack of effect on alpha-bungarotoxin on the spike-induced release of acetylcholine at the mammalian motor end-plate.
    Gelsema AJ
    Neurosci Lett; 1980 Nov; 20(2):189-93. PubMed ID: 7443068
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.