BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

684 related articles for article (PubMed ID: 7965831)

  • 1. Effects of hypercapnia on membrane potential and intracellular calcium in rat carotid body type I cells.
    Buckler KJ; Vaughan-Jones RD
    J Physiol; 1994 Jul; 478 ( Pt 1)(Pt 1):157-71. PubMed ID: 7965831
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of mitochondrial uncouplers on intracellular calcium, pH and membrane potential in rat carotid body type I cells.
    Buckler KJ; Vaughan-Jones RD
    J Physiol; 1998 Dec; 513 ( Pt 3)(Pt 3):819-33. PubMed ID: 9824720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ionic basis of pacemaker generation in dog colonic smooth muscle.
    Barajas-López C; Den Hertog A; Huizinga JD
    J Physiol; 1989 Sep; 416():385-402. PubMed ID: 2481730
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intracellular Ca2+, Na+ and H+ transients evoked by kainate in the leech giant glial cells in situ.
    Munsch T; Deitmer JW
    Neurosci Res; 1997 Jan; 27(1):45-56. PubMed ID: 9089698
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane depolarization and intracellular Ca2+ increase caused by high external Ca2+ in a rat calcitonin-secreting cell line.
    Yamashita N; Hagiwara S
    J Physiol; 1990 Dec; 431():243-67. PubMed ID: 1712840
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in [Ca2+]i and membrane currents during impaired mitochondrial metabolism in dissociated rat hippocampal neurons.
    Nowicky AV; Duchen MR
    J Physiol; 1998 Feb; 507 ( Pt 1)(Pt 1):131-45. PubMed ID: 9490829
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of delayed potassium and calcium currents in the rat sympathetic neurone under voltage clamp.
    Belluzzi O; Sacchi O; Wanke E
    J Physiol; 1985 Jan; 358():109-29. PubMed ID: 2580077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of hypoxia on membrane potential and intracellular calcium in rat neonatal carotid body type I cells.
    Buckler KJ; Vaughan-Jones RD
    J Physiol; 1994 May; 476(3):423-8. PubMed ID: 8057251
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calcium conductances and their role in the firing behavior of neonatal rat hypoglossal motoneurons.
    Viana F; Bayliss DA; Berger AJ
    J Neurophysiol; 1993 Jun; 69(6):2137-49. PubMed ID: 8394413
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ca2+ influx in resting rat sensory neurones that regulates and is regulated by ryanodine-sensitive Ca2+ stores.
    Usachev YM; Thayer SA
    J Physiol; 1999 Aug; 519 Pt 1(Pt 1):115-30. PubMed ID: 10432343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of unloaded cell shortening by sarcolemmal sodium-calcium exchange in isolated rat ventricular myocytes.
    Bouchard RA; Clark RB; Giles WR
    J Physiol; 1993 Sep; 469():583-99. PubMed ID: 8271217
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increases in intracellular calcium ion concentration during depolarization of cultured embryonic Xenopus spinal neurones.
    Barish ME
    J Physiol; 1991 Dec; 444():545-65. PubMed ID: 1668350
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of lowered extracellular pH on Ca2(+)-dependent K+ currents in type I cells from the neonatal rat carotid body.
    Peers C
    J Physiol; 1990 Mar; 422():381-95. PubMed ID: 1693683
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of extracellular pH on voltage-gated Na+, K+ and Ca2+ currents in isolated rat CA1 neurons.
    Tombaugh GC; Somjen GG
    J Physiol; 1996 Jun; 493 ( Pt 3)(Pt 3):719-32. PubMed ID: 8799894
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the mechanism of a pH-induced rise in membrane potassium conductance in hamster eggs.
    Georgiou P; House CR; McNiven AI; Yoshida S
    J Physiol; 1988 Aug; 402():121-38. PubMed ID: 2853221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anoxia-evoked intracellular pH and Ca2+ concentration changes in cultured postnatal rat hippocampal neurons.
    Diarra A; Sheldon C; Brett CL; Baimbridge KG; Church J
    Neuroscience; 1999; 93(3):1003-16. PubMed ID: 10473265
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurements of intracellular Ca2+ in dissociated type I cells of the rabbit carotid body.
    Biscoe TJ; Duchen MR; Eisner DA; O'Neill SC; Valdeolmillos M
    J Physiol; 1989 Sep; 416():421-34. PubMed ID: 2607457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of voltage-dependent calcium channels in stimulus-secretion coupling in rabbit carotid body chemoreceptor cells.
    Rocher A; Geijo-Barrientos E; Cáceres AI; Rigual R; González C; Almaraz L
    J Physiol; 2005 Jan; 562(Pt 2):407-20. PubMed ID: 15528240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrical properties of resting and acetylcholine-stimulated endothelium in intact rat aorta.
    Marchenko SM; Sage SO
    J Physiol; 1993 Mar; 462():735-51. PubMed ID: 8331598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acid-sensing ion channels contribute to transduction of extracellular acidosis in rat carotid body glomus cells.
    Tan ZY; Lu Y; Whiteis CA; Benson CJ; Chapleau MW; Abboud FM
    Circ Res; 2007 Nov; 101(10):1009-19. PubMed ID: 17872465
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 35.