These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 7965845)

  • 1. In vivo voltammetric measurement of evoked extracellular dopamine in the rat basolateral amygdaloid nucleus.
    Garris PA; Wightman RM
    J Physiol; 1994 Jul; 478 ( Pt 2)(Pt 2):239-49. PubMed ID: 7965845
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evoked extracellular dopamine in vivo in the medial prefrontal cortex.
    Garris PA; Collins LB; Jones SR; Wightman RM
    J Neurochem; 1993 Aug; 61(2):637-47. PubMed ID: 8336146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinct pharmacological regulation of evoked dopamine efflux in the amygdala and striatum of the rat in vivo.
    Garris PA; Wightman RM
    Synapse; 1995 Jul; 20(3):269-79. PubMed ID: 7570359
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterogeneity of evoked dopamine overflow within the striatal and striatoamygdaloid regions.
    Garris PA; Ciolkowski EL; Wightman RM
    Neuroscience; 1994 Mar; 59(2):417-27. PubMed ID: 8008199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interference by pH and Ca2+ ions during measurements of catecholamine release in slices of rat amygdala with fast-scan cyclic voltammetry.
    Jones SR; Mickelson GE; Collins LB; Kawagoe KT; Wightman RM
    J Neurosci Methods; 1994 Apr; 52(1):1-10. PubMed ID: 8090011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stimulated limbic and striatal dopamine release measured by fast cyclic voltammetry: anatomical, electrochemical and pharmacological characterisation.
    Stamford JA; Kruk ZL; Millar J
    Brain Res; 1988 Jun; 454(1-2):282-8. PubMed ID: 3261616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pharmacological characterisation of dopamine overflow in the striatum of the normal and MPTP-treated common marmoset, studied in vivo using fast cyclic voltammetry, nomifensine and sulpiride.
    Earl CD; Sautter J; Xie J; Kruk ZL; Kupsch A; Oertel WH
    J Neurosci Methods; 1998 Dec; 85(2):201-9. PubMed ID: 9874156
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extracellular dopamine dynamics in rat caudate-putamen during experimenter-delivered and intracranial self-stimulation.
    Kilpatrick MR; Rooney MB; Michael DJ; Wightman RM
    Neuroscience; 2000; 96(4):697-706. PubMed ID: 10727788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of dopamine uptake in the basolateral amygdaloid nucleus, caudate-putamen, and nucleus accumbens of the rat.
    Jones SR; Garris PA; Kilts CD; Wightman RM
    J Neurochem; 1995 Jun; 64(6):2581-9. PubMed ID: 7760038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Different kinetics govern dopaminergic transmission in the amygdala, prefrontal cortex, and striatum: an in vivo voltammetric study.
    Garris PA; Wightman RM
    J Neurosci; 1994 Jan; 14(1):442-50. PubMed ID: 8283249
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mesoamygdaloid dopamine neurons: differential rates of dopamine turnover in discrete amygdaloid nuclei of the rat brain.
    Kilts CD; Anderson CM
    Brain Res; 1987 Jul; 416(2):402-8. PubMed ID: 3620969
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Concentration-dependent actions of stimulated dopamine release on neuronal activity in rat striatum.
    Williams GV; Millar J
    Neuroscience; 1990; 39(1):1-16. PubMed ID: 2089272
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast in vivo monitoring of electrically evoked dopamine release by differential pulse amperometry with untreated carbon fibre electrodes.
    Suaud-Chagny MF; Brun P; Buda M; Gonon F
    J Neurosci Methods; 1992 Dec; 45(3):183-90. PubMed ID: 1363483
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased dopamine release in vivo by estradiol benzoate from the central amygdaloid nucleus of Parkinson's disease model rats.
    Liu B; Xie J
    J Neurochem; 2004 Aug; 90(3):654-8. PubMed ID: 15255943
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Noradrenergic Modulation of Dopamine Transmission Evoked by Electrical Stimulation of the Locus Coeruleus in the Rat Brain.
    Park JW; Bhimani RV; Park J
    ACS Chem Neurosci; 2017 Sep; 8(9):1913-1924. PubMed ID: 28594540
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-time monitoring of electrically evoked catecholamine signals in the songbird striatum using in vivo fast-scan cyclic voltammetry.
    Smith AR; Garris PA; Casto JM
    J Chem Neuroanat; 2015; 66-67():28-39. PubMed ID: 25900708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pharmacological and functional evidence for extracellular 3,4-dihydroxyphenylacetic acid as an index of metabolic activity of the adrenergic neurons: an in vivo voltammetry study in the rat rostral ventrolateral medulla.
    Gillon JY; Richard F; Quintin L; Pujol JF; Renaud B
    Neuroscience; 1990; 37(2):421-30. PubMed ID: 2133351
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo voltammetric evidence for the detection of norepinephrine release in the thalamus of freely moving rats.
    Renner KJ; Pazos L; Adams RN
    Brain Res; 1992 Apr; 577(1):49-56. PubMed ID: 1355696
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of metallothionein-I+II levels in specific brain areas and liver in the rat: role of catecholamines.
    Gasull T; Giralt M; Garcia A; Hidalgo J
    Glia; 1994 Oct; 12(2):135-43. PubMed ID: 7868187
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-time measurement of electrically evoked extracellular dopamine in the striatum of freely moving rats.
    Garris PA; Christensen JR; Rebec GV; Wightman RM
    J Neurochem; 1997 Jan; 68(1):152-61. PubMed ID: 8978721
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.