These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 7965845)

  • 21. Catecholamine biosynthesis in specific brain areas of the rat as determined by liquid chromatography and amperometric detection.
    Bennett BA; Sundberg DK
    Life Sci; 1981 Jun; 28(25):2811-7. PubMed ID: 6115297
    [No Abstract]   [Full Text] [Related]  

  • 22. In vivo voltammetric monitoring of noradrenaline release and catecholamine metabolism in the hypothalamic paraventricular nucleus.
    Mermet C; Gonon F
    Neuroscience; 1986 Nov; 19(3):829-38. PubMed ID: 3796818
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In vivo voltammetric monitoring of catecholamine metabolism in the A1 and A2 regions of the rat medulla oblongata.
    Suaud-Chagny MF; Steinberg R; Mermet C; Biziere K; Gonon F
    J Neurochem; 1986 Oct; 47(4):1141-7. PubMed ID: 3091764
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In vivo comparison of norepinephrine and dopamine release in rat brain by simultaneous measurements with fast-scan cyclic voltammetry.
    Park J; Takmakov P; Wightman RM
    J Neurochem; 2011 Dec; 119(5):932-44. PubMed ID: 21933188
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Direct in vivo monitoring of dopamine released from two striatal compartments in the rat.
    Ewing AG; Bigelow JC; Wightman RM
    Science; 1983 Jul; 221(4606):169-71. PubMed ID: 6857277
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Long-term depression in striatal dopamine release monitored by in vivo voltammetry in free moving rats.
    Abraini JH; Raharison L; Rostain JC
    Brain Res; 1991 May; 548(1-2):256-9. PubMed ID: 1678298
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Monitoring dopamine release by fast cyclic voltammetry: an in vivo study].
    Xie JX; Zhou Y; Jiang H
    Zhongguo Ying Yong Sheng Li Xue Za Zhi; 2000 Nov; 16(4):370-2. PubMed ID: 11236705
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of prostaglandin E 2 on central and peripheral catecholamine neurons.
    Bergström S; Farnebo LO; Fuxe K
    Eur J Pharmacol; 1973 Mar; 21(3):362-8. PubMed ID: 4145320
    [No Abstract]   [Full Text] [Related]  

  • 29. Extracting the basal extracellular dopamine concentrations from the evoked responses: re-analysis of the dopamine kinetics.
    Chen KC; Budygin EA
    J Neurosci Methods; 2007 Aug; 164(1):27-42. PubMed ID: 17498808
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Selective activation of mesoamygdaloid dopamine neurons by conditioned stress: attenuation by diazepam.
    Coco ML; Kuhn CM; Ely TD; Kilts CD
    Brain Res; 1992 Sep; 590(1-2):39-47. PubMed ID: 1422845
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of ergot drugs on central catecholamine neurons: evidence for a stimulation of central dopamine neurons.
    Corrodi H; Fuxe K; Hökfelt T; Lidbrink P; Ungerstedt U
    J Pharm Pharmacol; 1973 May; 25(5):409-12. PubMed ID: 4146398
    [No Abstract]   [Full Text] [Related]  

  • 32. Simultaneous Voltammetric Measurements of Glucose and Dopamine Demonstrate the Coupling of Glucose Availability with Increased Metabolic Demand in the Rat Striatum.
    Smith SK; Lee CA; Dausch ME; Horman BM; Patisaul HB; McCarty GS; Sombers LA
    ACS Chem Neurosci; 2017 Feb; 8(2):272-280. PubMed ID: 27984698
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dopamine release in the amygdaloid complex of the rat, studied by brain microdialysis.
    Young AM; Rees KR
    Neurosci Lett; 1998 Jun; 249(1):49-52. PubMed ID: 9672386
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Catecholamine turnover in rat cerebral cortex and caudate following repeated treatment with dihydroergotoxine.
    Cvejić V; Mrsulja BB
    Gerontology; 1981; 27(1-2):7-12. PubMed ID: 6111518
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Two simultaneously working storage pools of dopamine in mouse caudate and nucleus accumbens.
    Yavich L
    Br J Pharmacol; 1996 Nov; 119(5):869-76. PubMed ID: 8922734
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ex Vivo Measurement of Electrically Evoked Dopamine Release in Zebrafish Whole Brain.
    Shin M; Field TM; Stucky CS; Furgurson MN; Johnson MA
    ACS Chem Neurosci; 2017 Sep; 8(9):1880-1888. PubMed ID: 28617576
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Regional variations in the physiology of the rat caudate-putamen. 2. Effects of amphetamine and amphetamine induced dopamine release on basal and cortical stimulation evoked multiple unit activity.
    Glynn G; Ahmad SO
    J Neural Transm (Vienna); 2003 May; 110(5):461-85. PubMed ID: 12721809
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Differential effects of dopamine agonists upon stimulated limbic and striatal dopamine release: in vivo voltammetric data.
    Stamford JA; Kruk ZL; Millar J
    Br J Pharmacol; 1991 Jan; 102(1):45-50. PubMed ID: 1675147
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Voltammetric measurement of electrically evoked dopamine levels in the striatum of the anesthetized Syrian hamster.
    Greco PG; Meisel RL; Heidenreich BA; Garris PA
    J Neurosci Methods; 2006 Apr; 152(1-2):55-64. PubMed ID: 16176838
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 2-Chloro-N-[(S)-phenyl [(2S)-piperidin-2-yl] methyl]-3-trifluoromethyl benzamide, monohydrochloride, an inhibitor of the glycine transporter type 1, increases evoked-dopamine release in the rat nucleus accumbens in vivo via an enhanced glutamatergic neurotransmission.
    Leonetti M; Desvignes C; Bougault I; Souilhac J; Oury-Donat F; Steinberg R
    Neuroscience; 2006; 137(2):555-64. PubMed ID: 16289893
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.