BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 7966242)

  • 1. Transport of K+ and other cations across phospholipid membranes by nonesterified fatty acids.
    Sharpe MA; Cooper CE; Wrigglesworth JM
    J Membr Biol; 1994 Jul; 141(1):21-8. PubMed ID: 7966242
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ca(2+)-induced fusion of phospholipid vesicles containing free fatty acids: modulation by transmembrane pH gradients.
    Wilschut J; Scholma J; Eastman SJ; Hope MJ; Cullis PR
    Biochemistry; 1992 Mar; 31(10):2629-36. PubMed ID: 1547206
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancement of rates of H+, Na+ and K+ transport across phospholipid vesicular membrane by the combined action of carbonyl cyanide m-chlorophenylhydrazone and valinomycin: temperature-jump studies.
    Prabhananda BS; Kombrabail MH
    Biochim Biophys Acta; 1995 May; 1235(2):323-35. PubMed ID: 7756342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonesterified fatty acids induce transmembrane monovalent cation flux: host-guest interactions as determinants of fatty acid-induced ion transport.
    Zeng Y; Han X; Schlesinger P; Gross RW
    Biochemistry; 1998 Jun; 37(26):9497-508. PubMed ID: 9649333
    [TBL] [Abstract][Full Text] [Related]  

  • 5. H+, K+, and Na+ transport across phospholipid vesicular membrane by the combined action of proton uncoupler 2,4-dinitrophenol and valinomycin.
    Prabhananda BS; Kombrabail MH
    Biochim Biophys Acta; 1996 Jul; 1282(2):193-9. PubMed ID: 8703973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Movement of fatty acids, fatty acid analogues, and bile acids across phospholipid bilayers.
    Kamp F; Hamilton JA; Kamp F; Westerhoff HV; Hamilton JA
    Biochemistry; 1993 Oct; 32(41):11074-86. PubMed ID: 8218171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential movement of ions in artificial phospholipid vesicles.
    Sedgwick EG; Bragg PD
    FEBS Lett; 1990 Oct; 272(1-2):81-4. PubMed ID: 1699806
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrogenic and nonelectrogenic ion fluxes across lipid and mitochondrial membranes mediated by monensin and monensin ethyl ester.
    Antonenko YN; Rokitskaya TI; Huczyński A
    Biochim Biophys Acta; 2015 Apr; 1848(4):995-1004. PubMed ID: 25600660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fatty acids as modulators of cytochrome c oxidase in proteoliposomes.
    Sharpe M; Perin I; Wrigglesworth J; Nicholls P
    Biochem J; 1996 Dec; 320 ( Pt 2)(Pt 2):557-61. PubMed ID: 8973566
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of phloretin on ionophore mediated electroneutral transmembrane translocations of H(+), K(+) and Na(+) in phospholipid vesicles.
    Bala S; Kombrabail MH; Prabhananda BS
    Biochim Biophys Acta; 2001 Feb; 1510(1-2):258-69. PubMed ID: 11342163
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement of transmembrane proton conductivity of protonophores by membrane-permeant cations.
    Ahmed I; Krishnamoorthy G
    Biochim Biophys Acta; 1990 May; 1024(2):298-306. PubMed ID: 1693858
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The proteoliposomal steady state. Effect of size, capacitance and membrane permeability on cytochrome-oxidase-induced ion gradients.
    Wrigglesworth JM; Cooper CE; Sharpe MA; Nicholls P
    Biochem J; 1990 Aug; 270(1):109-18. PubMed ID: 2168698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Liposome mediated dissipation of valinomycin-imposed potassium potential across erythrocytes membrane.
    Matsudaira R; Nakae T
    Tokai J Exp Clin Med; 1987 Nov; 12(4):253-61. PubMed ID: 3503395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation by small hydrophobic molecules of valinomycin-mediated potassium transport across phospholipid vesicle membranes.
    Clement NR; Gould MJ
    Biochemistry; 1981 Mar; 20(6):1539-43. PubMed ID: 6261799
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutual inactivation of valinomycin and protonophores by complex formation in liposomal membranes.
    Krishnamoorthy G
    FEBS Lett; 1988 May; 232(1):199-203. PubMed ID: 2835269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An improved procedure for reconstitution of the uncoupling protein and in-depth analysis of H+/OH- transport.
    Winkler E; Klingenberg M
    Eur J Biochem; 1992 Jul; 207(1):135-45. PubMed ID: 1378400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modification of cation selectivity of valinomycin by complexing it with an anion: delta pH decay studies.
    Prabhananda BS; Kombrabail MH
    Biochem Mol Biol Int; 1996 Feb; 38(2):417-24. PubMed ID: 8850538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nigericin-mediated H+, K+ and Na+ transports across vesicular membrane: T-jump studies.
    Prabhananda BS; Ugrankar MM
    Biochim Biophys Acta; 1991 Dec; 1070(2):481-91. PubMed ID: 1764460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Ion transport through thick liquid membranes by fatty acids].
    Kocherginskiĭ NM; Dolginova EA; Petrov VV; Antonov VF; Moshkovskiĭ IuSh
    Biofizika; 1980; 25(5):832-6. PubMed ID: 7417570
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proton transport by gastric membrane vesicles.
    Chang H; Saccomani G; Rabon E; Schackmann R; Sachs G
    Biochim Biophys Acta; 1977 Jan; 464(2):313-27. PubMed ID: 12816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.