These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
228 related articles for article (PubMed ID: 7966270)
1. Transcription of the xyl operon is controlled in Bacillus subtilis by tandem overlapping operators spaced by four base-pairs. Dahl MK; Degenkolb J; Hillen W J Mol Biol; 1994 Oct; 243(3):413-24. PubMed ID: 7966270 [TBL] [Abstract][Full Text] [Related]
2. Transcription regulation in thermophilic bacteria: high resolution contact probing of Bacillus stearothermophilus and Thermotoga neapolitana arginine repressor-operator interactions. Song H; Wang H; Gigot D; Dimova D; Sakanyan V; Glansdorff N; Charlier D J Mol Biol; 2002 Jan; 315(3):255-74. PubMed ID: 11786010 [TBL] [Abstract][Full Text] [Related]
3. Regulation of xylose utilization in Bacillus licheniformis: Xyl repressor-xyl-operator interaction studied by DNA modification protection and interference. Scheler A; Hillen W Mol Microbiol; 1994 Aug; 13(3):505-12. PubMed ID: 7997167 [TBL] [Abstract][Full Text] [Related]
4. In vivo and in vitro studies of TrpR-DNA interactions. Yang J; Gunasekera A; Lavoie TA; Jin L; Lewis DE; Carey J J Mol Biol; 1996 Apr; 258(1):37-52. PubMed ID: 8613990 [TBL] [Abstract][Full Text] [Related]
5. Regulation of the Bacillus subtilis W23 xylose utilization operon: interaction of the Xyl repressor with the xyl operator and the inducer xylose. Gärtner D; Degenkolb J; Ripperger JA; Allmansberger R; Hillen W Mol Gen Genet; 1992 Apr; 232(3):415-22. PubMed ID: 1588910 [TBL] [Abstract][Full Text] [Related]
6. The arginine repressor of Escherichia coli K-12 makes direct contacts to minor and major groove determinants of the operators. Wang H; Glansdorff N; Charlier D J Mol Biol; 1998 Apr; 277(4):805-24. PubMed ID: 9545374 [TBL] [Abstract][Full Text] [Related]
7. Cooperative and non-cooperative DNA binding modes of catabolite control protein CcpA from Bacillus megaterium result from sensing two different signals. Gösseringer R; Küster E; Galinier A; Deutscher J; Hillen W J Mol Biol; 1997 Mar; 266(4):665-76. PubMed ID: 9102460 [TBL] [Abstract][Full Text] [Related]
8. Nag repressor-operator interactions: protein-DNA contacts cover more than two turns of the DNA helix. Plumbridge J; Kolb A J Mol Biol; 1995 Jun; 249(5):890-902. PubMed ID: 7791215 [TBL] [Abstract][Full Text] [Related]
9. Purification and in vitro activities of the Bacillus subtilis TnrA transcription factor. Wray LV; Zalieckas JM; Fisher SH J Mol Biol; 2000 Jun; 300(1):29-40. PubMed ID: 10864496 [TBL] [Abstract][Full Text] [Related]
10. Interaction of a repressor and its binding sites for regulation of the Bacillus subtilis iol divergon. Yoshida KI; Shibayama T; Aoyama D; Fujita Y J Mol Biol; 1999 Jan; 285(3):917-29. PubMed ID: 9887260 [TBL] [Abstract][Full Text] [Related]
11. Probing activation of the prokaryotic arginine transcriptional regulator using chimeric proteins. Holtham CA; Jumel K; Miller CM; Harding SE; Baumberg S; Stockley PG J Mol Biol; 1999 Jun; 289(4):707-27. PubMed ID: 10369757 [TBL] [Abstract][Full Text] [Related]
12. Probing key DNA contacts in AraR-mediated transcriptional repression of the Bacillus subtilis arabinose regulon. Franco IS; Mota LJ; Soares CM; de Sá-Nogueira I Nucleic Acids Res; 2007; 35(14):4755-66. PubMed ID: 17617643 [TBL] [Abstract][Full Text] [Related]
13. In vitro binding of the pleiotropic transcriptional regulatory protein, FruR, to the fru, pps, ace, pts and icd operons of Escherichia coli and Salmonella typhimurium. Ramseier TM; Nègre D; Cortay JC; Scarabel M; Cozzone AJ; Saier MH J Mol Biol; 1993 Nov; 234(1):28-44. PubMed ID: 8230205 [TBL] [Abstract][Full Text] [Related]
14. Regulation of arginine biosynthesis in the psychropiezophilic bacterium Moritella profunda: in vivo repressibility and in vitro repressor-operator contact probing. Xu Y; Sun Y; Huysveld N; Gigot D; Glansdorff N; Charlier D J Mol Biol; 2003 Feb; 326(2):353-69. PubMed ID: 12559906 [TBL] [Abstract][Full Text] [Related]
15. Origin of the asymmetrical contact between lac repressor and lac operator DNA. Rastinejad F; Artz P; Lu P J Mol Biol; 1993 Oct; 233(3):389-99. PubMed ID: 8411152 [TBL] [Abstract][Full Text] [Related]
16. Recognition of DNA by omega protein from the broad-host range Streptococcus pyogenes plasmid pSM19035: analysis of binding to operator DNA with one to four heptad repeats. de la Hoz AB; Pratto F; Misselwitz R; Speck C; Weihofen W; Welfle K; Saenger W; Welfle H; Alonso JC Nucleic Acids Res; 2004; 32(10):3136-47. PubMed ID: 15190131 [TBL] [Abstract][Full Text] [Related]
17. Development and characterization of a xylose-dependent system for expression of cloned genes in Bacillus subtilis: conditional complementation of a teichoic acid mutant. Bhavsar AP; Zhao X; Brown ED Appl Environ Microbiol; 2001 Jan; 67(1):403-10. PubMed ID: 11133472 [TBL] [Abstract][Full Text] [Related]
18. Bacillus subtilis LmrA is a repressor of the lmrAB and yxaGH operons: identification of its binding site and functional analysis of lmrB and yxaGH. Yoshida K; Ohki YH; Murata M; Kinehara M; Matsuoka H; Satomura T; Ohki R; Kumano M; Yamane K; Fujita Y J Bacteriol; 2004 Sep; 186(17):5640-8. PubMed ID: 15317768 [TBL] [Abstract][Full Text] [Related]
19. Molecular cloning, structure, promoters and regulatory elements for transcription of the Bacillus licheniformis encoded regulon for xylose utilization. Scheler A; Rygus T; Allmansberger R; Hillen W Arch Microbiol; 1991; 155(6):526-34. PubMed ID: 1953294 [TBL] [Abstract][Full Text] [Related]
20. Glucose and glucose-6-phosphate interaction with Xyl repressor proteins from Bacillus spp. may contribute to regulation of xylose utilization. Dahl MK; Schmiedel D; Hillen W J Bacteriol; 1995 Oct; 177(19):5467-72. PubMed ID: 7559331 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]