These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 7966303)

  • 21. Mode of action of the TyrR protein: repression and activation of the tyrP promoter of Escherichia coli.
    Yang J; Hwang JS; Camakaris H; Irawaty W; Ishihama A; Pittard J
    Mol Microbiol; 2004 Apr; 52(1):243-56. PubMed ID: 15049824
    [TBL] [Abstract][Full Text] [Related]  

  • 22. NsrR targets in the Escherichia coli genome: new insights into DNA sequence requirements for binding and a role for NsrR in the regulation of motility.
    Partridge JD; Bodenmiller DM; Humphrys MS; Spiro S
    Mol Microbiol; 2009 Aug; 73(4):680-94. PubMed ID: 19656291
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spacing of promoter elements regulates the basal expression of the soxS gene and converts SoxR from a transcriptional activator into a repressor.
    Hidalgo E; Demple B
    EMBO J; 1997 Mar; 16(5):1056-65. PubMed ID: 9118944
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A nucleoprotein activation complex between the leucine-responsive regulatory protein and DNA upstream of the gltBDF operon in Escherichia coli.
    Wiese DE; Ernsting BR; Blumenthal RM; Matthews RG
    J Mol Biol; 1997 Jul; 270(2):152-68. PubMed ID: 9236118
    [TBL] [Abstract][Full Text] [Related]  

  • 25. GadX/GadW-dependent regulation of the Escherichia coli acid fitness island: transcriptional control at the gadY-gadW divergent promoters and identification of four novel 42 bp GadX/GadW-specific binding sites.
    Tramonti A; De Canio M; De Biase D
    Mol Microbiol; 2008 Nov; 70(4):965-82. PubMed ID: 18808381
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The l-rhamnose-dependent regulator RhaS and its target promoters from
    Fricke PM; Gries ML; Mürköster M; Höninger M; Gätgens J; Bott M; Polen T
    Front Microbiol; 2022; 13():981767. PubMed ID: 36060754
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reaching out. Locating and lengthening the interdomain linker in AraC protein.
    Eustance RJ; Bustos SA; Schleif RF
    J Mol Biol; 1994 Sep; 242(4):330-8. PubMed ID: 7932693
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transactivation of GATA-1 promoter with ETS1, ETS2 and ERGB/Hu-FLI-1 proteins: stabilization of the ETS1 protein binding on GATA-1 promoter sequences by monoclonal antibody.
    Seth A; Robinson L; Thompson DM; Watson DK; Papas TS
    Oncogene; 1993 Jul; 8(7):1783-90. PubMed ID: 8510925
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Differences in the mechanism of the allosteric l-rhamnose responses of the AraC/XylS family transcription activators RhaS and RhaR.
    Kolin A; Balasubramaniam V; Skredenske JM; Wickstrum JR; Egan SM
    Mol Microbiol; 2008 Apr; 68(2):448-61. PubMed ID: 18366439
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genetic evidence that transcription activation by RhaS involves specific amino acid contacts with sigma 70.
    Bhende PM; Egan SM
    J Bacteriol; 2000 Sep; 182(17):4959-69. PubMed ID: 10940041
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Linker regions of the RhaS and RhaR proteins.
    Kolin A; Jevtic V; Swint-Kruse L; Egan SM
    J Bacteriol; 2007 Jan; 189(1):269-71. PubMed ID: 17071764
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The RhaS activator controls the Erwinia chrysanthemi 3937 genes rhiN, rhiT and rhiE involved in rhamnogalacturonan catabolism.
    Hugouvieux-Cotte-Pattat N
    Mol Microbiol; 2004 Mar; 51(5):1361-74. PubMed ID: 14982630
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Functional determinants of transcription factors in Escherichia coli: protein families and binding sites.
    Madan Babu M; Teichmann SA
    Trends Genet; 2003 Feb; 19(2):75-9. PubMed ID: 12547514
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthetic Chemical Inducers and Genetic Decoupling Enable Orthogonal Control of the rhaBAD Promoter.
    Kelly CL; Liu Z; Yoshihara A; Jenkinson SF; Wormald MR; Otero J; Estévez A; Kato A; Marqvorsen MH; Fleet GW; Estévez RJ; Izumori K; Heap JT
    ACS Synth Biol; 2016 Oct; 5(10):1136-1145. PubMed ID: 27247275
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Binding of the Escherichia coli MelR protein to the melAB promoter: orientation of MelR subunits and investigation of MelR-DNA contacts.
    Grainger DC; Belyaeva TA; Lee DJ; Hyde EI; Busby SJ
    Mol Microbiol; 2003 Apr; 48(2):335-48. PubMed ID: 12675795
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Positive regulation of the Escherichia coli L-rhamnose operon is mediated by the products of tandemly repeated regulatory genes.
    Tobin JF; Schleif RF
    J Mol Biol; 1987 Aug; 196(4):789-99. PubMed ID: 3316663
    [TBL] [Abstract][Full Text] [Related]  

  • 37. AraC protein contacts asymmetric sites in the Escherichia coli araFGH promoter.
    Lu Y; Flaherty C; Hendrickson W
    J Biol Chem; 1992 Dec; 267(34):24848-57. PubMed ID: 1447222
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The role of rigidity in DNA looping-unlooping by AraC.
    Harmer T; Wu M; Schleif R
    Proc Natl Acad Sci U S A; 2001 Jan; 98(2):427-31. PubMed ID: 11209047
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A dimer of AraC protein contacts three adjacent major groove regions of the araI DNA site.
    Hendrickson W; Schleif R
    Proc Natl Acad Sci U S A; 1985 May; 82(10):3129-33. PubMed ID: 3858809
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Variation of half-site organization and DNA looping by AraC protein.
    Carra JH; Schleif RF
    EMBO J; 1993 Jan; 12(1):35-44. PubMed ID: 8428590
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.