These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 7966309)

  • 1. The processive reaction mechanism of ribonuclease II.
    Cannistraro VJ; Kennell D
    J Mol Biol; 1994 Nov; 243(5):930-43. PubMed ID: 7966309
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [RNAse substrate specificity in Acholeplasma laidlawii PG-8].
    Ianchinova ZIa; Grama DP; Skripal' IG
    Mikrobiol Zh (1978); 1992; 54(1):58-61. PubMed ID: 1584085
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The reaction mechanism of ribonuclease II and its interaction with nucleic acid secondary structures.
    Cannistraro VJ; Kennell D
    Biochim Biophys Acta; 1999 Aug; 1433(1-2):170-87. PubMed ID: 10446370
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unravelling the dynamics of RNA degradation by ribonuclease II and its RNA-bound complex.
    Frazão C; McVey CE; Amblar M; Barbas A; Vonrhein C; Arraiano CM; Carrondo MA
    Nature; 2006 Sep; 443(7107):110-4. PubMed ID: 16957732
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNase R mutants elucidate the catalysis of structured RNA: RNA-binding domains select the RNAs targeted for degradation.
    Matos RG; Barbas A; Arraiano CM
    Biochem J; 2009 Sep; 423(2):291-301. PubMed ID: 19630750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Poly(A)- and poly(U)-specific RNA 3' tail shortening by E. coli ribonuclease E.
    Huang H; Liao J; Cohen SN
    Nature; 1998 Jan; 391(6662):99-102. PubMed ID: 9422514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of the RNase H cleavage kinetics and blood serum stability of the north-conformationally constrained and 2'-alkoxy modified oligonucleotides.
    Honcharenko D; Barman J; Varghese OP; Chattopadhyaya J
    Biochemistry; 2007 May; 46(19):5635-46. PubMed ID: 17411072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extending the limits to enzymatic catalysis: diffusion of ribonuclease A in one dimension.
    Kelemen BR; Raines RT
    Biochemistry; 1999 Apr; 38(17):5302-7. PubMed ID: 10220316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-strand-preferring RNases degrade double-stranded RNAs by destabilizing its secondary structure.
    Yakovlev G; Moiseyev GP; Sorrentino S; De Prisco R; Libonati M
    J Biomol Struct Dyn; 1997 Oct; 15(2):243-50. PubMed ID: 9399152
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural determinants of the uridine-preferring specificity of RNase PL3.
    Vicentini AM; Kote-Jarai Z; Hofsteenge J
    Biochemistry; 1996 Jul; 35(28):9128-32. PubMed ID: 8703917
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterizing ribonucleases in vitro examples of synergies between biochemical and structural analysis.
    Arraiano CM; Barbas A; Amblar M
    Methods Enzymol; 2008; 447():131-60. PubMed ID: 19161842
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutational analysis of the joining regions flanking helix P18 in E. coli RNase P RNA.
    Hardt WD; Hartmann RK
    J Mol Biol; 1996 Jun; 259(3):422-33. PubMed ID: 8676378
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation and properties of a single-strand 5'----3' exoribonuclease from Ehrlich ascites tumor cell nucleoli.
    Lasater LS; Eichler DC
    Biochemistry; 1984 Sep; 23(19):4367-73. PubMed ID: 6207856
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fate of mRNA extremities generated by intrinsic termination: detailed analysis of reactions catalyzed by ribonuclease II and poly(A) polymerase.
    Folichon M; Marujo PE; Arluison V; Le Derout J; Pellegrini O; Hajnsdorf E; Régnier P
    Biochimie; 2005; 87(9-10):819-26. PubMed ID: 15885870
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Swapping the domains of exoribonucleases RNase II and RNase R: conferring upon RNase II the ability to degrade ds RNA.
    Matos RG; Barbas A; Gómez-Puertas P; Arraiano CM
    Proteins; 2011 Jun; 79(6):1853-67. PubMed ID: 21465561
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RNase II removes the oligo(A) tails that destabilize the rpsO mRNA of Escherichia coli.
    Marujo PE; Hajnsdorf E; Le Derout J; Andrade R; Arraiano CM; Régnier P
    RNA; 2000 Aug; 6(8):1185-93. PubMed ID: 10943897
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Double-stranded RNA: the variables controlling its degradation by RNases.
    Yakovlev GI; Sorrentino S; Moiseyev GP; Libonati M
    Nucleic Acids Symp Ser; 1995; (33):106-8. PubMed ID: 8643340
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of polyamines on the activities of Escherichia coli ribonuclease I and II.
    Kumagai H; Igarashi K; Yoshikawa M; Hirose S
    J Biochem; 1977 Feb; 81(2):381-8. PubMed ID: 321440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purification and characterization of Escherichia coli RNase I. Comparisons with RNase M.
    Meador J; Cannon B; Cannistraro VJ; Kennell D
    Eur J Biochem; 1990 Feb; 187(3):549-53. PubMed ID: 2406134
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural basis for processivity and single-strand specificity of RNase II.
    Zuo Y; Vincent HA; Zhang J; Wang Y; Deutscher MP; Malhotra A
    Mol Cell; 2006 Oct; 24(1):149-56. PubMed ID: 16996291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.