These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 7966346)

  • 21. Early development of the optic chiasm in the gray short-tailed opossum, Monodelphis domestica.
    Taylor JS; Guillery RW
    J Comp Neurol; 1994 Dec; 350(1):109-21. PubMed ID: 7860795
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chronotopic fiber reordering and the distribution of cell adhesion and extracellular matrix molecules in the optic pathway of fetal ferrets.
    Reese BE; Johnson PT; Hocking DR; Bolles AB
    J Comp Neurol; 1997 Apr; 380(3):355-72. PubMed ID: 9087518
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regional differences in pigeon optic tract, chiasm, and retino-receptive layers of optic tectum.
    Duff TA; Scott G; Mai R
    J Comp Neurol; 1981 May; 198(2):231-47. PubMed ID: 7240443
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Glial domains and axonal reordering in the chiasmatic region of the developing ferret.
    Reese BE; Maynard TM; Hocking DR
    J Comp Neurol; 1994 Nov; 349(2):303-24. PubMed ID: 7860785
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Early midline interactions are important in mouse optic chiasm formation but are not critical in man: a significant distinction between man and mouse.
    Neveu MM; Holder GE; Ragge NK; Sloper JJ; Collin JR; Jeffery G
    Eur J Neurosci; 2006 Jun; 23(11):3034-42. PubMed ID: 16819992
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chiasmatic course of temporal retinal axons in the developing ferret.
    Baker GE; Reese BE
    J Comp Neurol; 1993 Apr; 330(1):95-104. PubMed ID: 8468406
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantitative analysis of the optic nerve of the North American opossum (Didelphis virginiana): an electron microscopic study.
    Kirby MA; Clift-Forsberg L; Wilson PD; Rapisardi SC
    J Comp Neurol; 1982 Nov; 211(3):318-27. PubMed ID: 7174896
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Giant neural systems in the inner retina and optic nerve of small whales.
    Dawson WW; Hawthorne MN; Jenkins RL; Goldston RT
    J Comp Neurol; 1982 Feb; 205(1):1-7. PubMed ID: 7068947
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nerve growth factor-induced growth of sympathetic axons into the optic tract of mature mice is enhanced by an absence of p75NTR expression.
    Hannila SS; Kawaja MD
    J Neurobiol; 1999 Apr; 39(1):51-66. PubMed ID: 10213453
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lateralized visual behavior in bottlenose dolphins (Tursiops truncatus) performing audio-visual tasks: the right visual field advantage.
    Delfour F; Marten K
    Behav Processes; 2006 Jan; 71(1):41-50. PubMed ID: 16246503
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Failure to restore vision after optic nerve regeneration in reptiles: interspecies variation in response to axotomy.
    Dunlop SA; Tee LB; Stirling RV; Taylor AL; Runham PB; Barber AB; Kuchling G; Rodger J; Roberts JD; Harvey AR; Beazley LD
    J Comp Neurol; 2004 Oct; 478(3):292-305. PubMed ID: 15368531
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ultrastructural study of normal and degenerating nerve fibers in the protocerebral tract of the crab Ucides cordatus.
    Corrêa CL; Allodi S; Martinez AM
    Brain Behav Evol; 2005; 66(3):145-57. PubMed ID: 16088099
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Contribution of white matter lesions to gray matter atrophy in multiple sclerosis: evidence from voxel-based analysis of T1 lesions in the visual pathway.
    Sepulcre J; Goñi J; Masdeu JC; Bejarano B; Vélez de Mendizábal N; Toledo JB; Villoslada P
    Arch Neurol; 2009 Feb; 66(2):173-9. PubMed ID: 19204153
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Changes in the optic disc excavation of children affected by cerebral visual impairment: a tomographic analysis.
    Ruberto G; Salati R; Milano G; Bertone C; Tinelli C; Fazzi E; Guagliano R; Signorini S; Borgatti R; Bianchi A; Bianchi PE
    Invest Ophthalmol Vis Sci; 2006 Feb; 47(2):484-8. PubMed ID: 16431940
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Retinofugal fibres change conduction velocity and diameter between the optic nerve and tract in ferrets.
    Baker GE; Stryker MP
    Nature; 1990 Mar; 344(6264):342-5. PubMed ID: 2314474
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Peculiar and typical oligodendrocytes are involved in an uneven myelination pattern during the ontogeny of the lizard visual pathway.
    Santos E; Yanes CM; Monzón-Mayor M; del Mar Romero-Alemán M
    J Neurobiol; 2006 Sep; 66(10):1115-24. PubMed ID: 16929522
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Decussating axons segregate within the anterior core of the primate optic chiasm.
    Horton JC; Dilbeck MD; Economides JR
    Br J Ophthalmol; 2023 Apr; 107(4):447-452. PubMed ID: 36575620
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optic nerve degeneration induces the expression of MHC antigens in the rat visual system.
    Rao K; Lund RD
    J Comp Neurol; 1993 Oct; 336(4):613-27. PubMed ID: 8245228
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Axon dependent glial changes during optic fiber regeneration in the goldfish.
    Levine RL
    J Comp Neurol; 1993 Jul; 333(4):543-53. PubMed ID: 8370816
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Wilbrand's knee of the primate optic chiasm is an artefact of monocular enucleation.
    Horton JC
    Trans Am Ophthalmol Soc; 1997; 95():579-609. PubMed ID: 9440188
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.