These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 796676)

  • 21. Effect of single DNA lesions on in vitro replication with DNA polymerase III holoenzyme. Comparison with other polymerases.
    Belguise-Valladier P; Maki H; Sekiguchi M; Fuchs RP
    J Mol Biol; 1994 Feb; 236(1):151-64. PubMed ID: 8107100
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Differential binding of Escherichia coli DNA polymerases to the beta-sliding clamp.
    Maul RW; Ponticelli SK; Duzen JM; Sutton MD
    Mol Microbiol; 2007 Aug; 65(3):811-27. PubMed ID: 17635192
    [TBL] [Abstract][Full Text] [Related]  

  • 23. DNA polymerases of low-GC gram-positive eubacteria: identification of the replication-specific enzyme encoded by dnaE.
    Barnes MH; Miller SD; Brown NC
    J Bacteriol; 2002 Jul; 184(14):3834-8. PubMed ID: 12081953
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The mutagenic footprint of low-fidelity Pol I ColE1 plasmid replication in E. coli reveals an extensive interplay between Pol I and Pol III.
    Troll C; Yoder J; Alexander D; Hernández J; Loh Y; Camps M
    Curr Genet; 2014 Aug; 60(3):123-34. PubMed ID: 24185821
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanism of DNA polymerase II-mediated frameshift mutagenesis.
    Becherel OJ; Fuchs RP
    Proc Natl Acad Sci U S A; 2001 Jul; 98(15):8566-71. PubMed ID: 11447256
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Specific amino acid residues in the beta sliding clamp establish a DNA polymerase usage hierarchy in Escherichia coli.
    Sutton MD; Duzen JM
    DNA Repair (Amst); 2006 Mar; 5(3):312-23. PubMed ID: 16338175
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Coping with replication 'train wrecks' in Escherichia coli using Pol V, Pol II and RecA proteins.
    Goodman MF
    Trends Biochem Sci; 2000 Apr; 25(4):189-95. PubMed ID: 10754553
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Holoenzyme DNA polymerase III fixes mutations.
    Bryan SK; Hagensee M; Moses RE
    Mutat Res; 1990 Apr; 243(4):313-8. PubMed ID: 2183042
    [TBL] [Abstract][Full Text] [Related]  

  • 29. DNA polymerase II as a fidelity factor in chromosomal DNA synthesis in Escherichia coli.
    Banach-Orlowska M; Fijalkowska IJ; Schaaper RM; Jonczyk P
    Mol Microbiol; 2005 Oct; 58(1):61-70. PubMed ID: 16164549
    [TBL] [Abstract][Full Text] [Related]  

  • 30. DNA polymerase epsilon is required for coordinated and efficient chromosomal DNA replication in Xenopus egg extracts.
    Waga S; Masuda T; Takisawa H; Sugino A
    Proc Natl Acad Sci U S A; 2001 Apr; 98(9):4978-83. PubMed ID: 11296256
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Two family B DNA polymerases from Aeropyrum pernix, an aerobic hyperthermophilic crenarchaeote.
    Cann IK; Ishino S; Nomura N; Sako Y; Ishino Y
    J Bacteriol; 1999 Oct; 181(19):5984-92. PubMed ID: 10498710
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genetic Networks Required to Coordinate Chromosome Replication by DNA Polymerases α, δ, and ε in Saccharomyces cerevisiae.
    Dubarry M; Lawless C; Banks AP; Cockell S; Lydall D
    G3 (Bethesda); 2015 Aug; 5(10):2187-97. PubMed ID: 26297725
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The requirement of IHF protein for extrachromosomal replication of the Escherichia coli oriC in a mutant deficient in DNA polymerase I activity.
    Filutowicz M; Roll J
    New Biol; 1990 Sep; 2(9):818-27. PubMed ID: 2279034
    [TBL] [Abstract][Full Text] [Related]  

  • 34. DNA repair in DNA-polymerase-deficient mutants of Escherichia coli.
    Smith DW; Tait RC; Harris AL
    Basic Life Sci; 1975; 5B():473-81. PubMed ID: 1103863
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Proofreading-defective DNA polymerase II increases adaptive mutation in Escherichia coli.
    Foster PL; Gudmundsson G; Trimarchi JM; Cai H; Goodman MF
    Proc Natl Acad Sci U S A; 1995 Aug; 92(17):7951-5. PubMed ID: 7644519
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Requirement for the polymerization and 5'-->3' exonuclease activities of DNA polymerase I in initiation of DNA replication at oriK sites in the absence of RecA in Escherichia coli rnhA mutants.
    Cao Y; Kogoma T
    J Bacteriol; 1993 Nov; 175(22):7254-9. PubMed ID: 8226672
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Translesion synthesis in Escherichia coli: lessons from the NarI mutation hot spot.
    Fuchs RP; Fujii S
    DNA Repair (Amst); 2007 Jul; 6(7):1032-41. PubMed ID: 17403618
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cloning the polB gene of Escherichia coli and identification of its product.
    Chen H; Bryan SK; Moses RE
    J Biol Chem; 1989 Dec; 264(34):20591-5. PubMed ID: 2684981
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Lagging strand DNA synthesis by calf thymus DNA polymerases alpha, beta, delta and epsilon in the presence of auxiliary proteins.
    Podust VN; Hübscher U
    Nucleic Acids Res; 1993 Feb; 21(4):841-6. PubMed ID: 8451186
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mutant forms of the Escherichia colibeta sliding clamp that distinguish between its roles in replication and DNA polymerase V-dependent translesion DNA synthesis.
    Sutton MD; Duzen JM; Maul RW
    Mol Microbiol; 2005 Mar; 55(6):1751-66. PubMed ID: 15752198
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.