These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 7967155)

  • 21. QSAR modeling of toxicity of diverse organic chemicals to Daphnia magna using 2D and 3D descriptors.
    Kar S; Roy K
    J Hazard Mater; 2010 May; 177(1-3):344-51. PubMed ID: 20045248
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structure- and property-activity relationship models for prediction of microbial toxicity of organic chemicals to activated sludge.
    Nirmalakhandan N; Egemen E; Trevizo C; Xu S
    Ecotoxicol Environ Saf; 1998 Feb; 39(2):112-9. PubMed ID: 9515083
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantitative structure activity relationships for skin corrosivity of organic acids, bases and phenols.
    Barratt MD
    Toxicol Lett; 1995 Jan; 75(1-3):169-76. PubMed ID: 7863523
    [TBL] [Abstract][Full Text] [Related]  

  • 24. QSARs for selected aliphatic and aromatic amines.
    Schultz TW; Wilke TS; Bryant SE; Hosein LM
    Sci Total Environ; 1991 Dec; 109-110():581-7. PubMed ID: 1815376
    [TBL] [Abstract][Full Text] [Related]  

  • 25. QSAR models for both mutagenic potency and activity: application to nitroarenes and aromatic amines.
    Benigni R; Andreoli C; Giuliani A
    Environ Mol Mutagen; 1994; 24(3):208-19. PubMed ID: 7957124
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Carcinogenicity of the aromatic amines: from structure-activity relationships to mechanisms of action and risk assessment.
    Benigni R; Passerini L
    Mutat Res; 2002 Jul; 511(3):191-206. PubMed ID: 12088717
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Partition coefficients and the structure-activity relationship of the anesthetic gases.
    Hansch C; Vittoria A; Silipo C; Jow PY
    J Med Chem; 1975 Jun; 18(6):546-8. PubMed ID: 1151965
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prediction of rodent carcinogenicity of aromatic amines: a quantitative structure-activity relationships model.
    Franke R; Gruska A; Giuliani A; Benigni R
    Carcinogenesis; 2001 Sep; 22(9):1561-71. PubMed ID: 11532881
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The role of solvent-accessible surface area in determining partition coefficients.
    Dunn WJ; Koehler MG; Grigoras S
    J Med Chem; 1987 Jul; 30(7):1121-6. PubMed ID: 3599019
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Relationships Between Aquatic Toxicity, Chemical Hydrophobicity, and Mode of Action: Log Kow Revisited.
    Lambert FN; Vivian DN; Raimondo S; Tebes-Stevens CT; Barron MG
    Arch Environ Contam Toxicol; 2022 Nov; 83(4):326-338. PubMed ID: 35864329
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Predicting the bioconcentration factor of highly hydrophobic organic chemicals.
    Garg R; Smith CJ
    Food Chem Toxicol; 2014 Jul; 69():252-9. PubMed ID: 24759698
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Predicting PBT and CMR properties of substances of very high concern (SVHCs) using QSAR models, and application for K-REACH.
    Moon J; Lee B; Ra JS; Kim KT
    Toxicol Rep; 2020; 7():995-1000. PubMed ID: 32874922
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quantitative structure-activity relationships for chemical toxicity to environmental bacteria.
    Blum DJ; Speece RE
    Ecotoxicol Environ Saf; 1991 Oct; 22(2):198-224. PubMed ID: 1769352
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Relationships between descriptors for hydrophobicity and soft electrophilicity in predicting toxicity.
    Mekenyan OG; Veith GD
    SAR QSAR Environ Res; 1993; 1(4):335-44. PubMed ID: 8790637
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantitative structure-activity relationships for predicting soil-sediment sorption coefficients for organic chemicals.
    Doucette WJ
    Environ Toxicol Chem; 2003 Aug; 22(8):1771-88. PubMed ID: 12924577
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanism-based quantitative structure-phytotoxicity relationships comparative inhibition of substituted phenols on root elongation of Cucumis sativus.
    Wang X; Wang Y; Chunsheng Y; Wang L; Han S
    Arch Environ Contam Toxicol; 2002 Jan; 42(1):29-35. PubMed ID: 11706365
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Predictive ecotoxicity of MoA 1 of organic chemicals using in silico approaches.
    de Morais E Silva L; Alves MF; Scotti L; Lopes WS; Scotti MT
    Ecotoxicol Environ Saf; 2018 May; 153():151-159. PubMed ID: 29427976
    [TBL] [Abstract][Full Text] [Related]  

  • 38. QSAR for baseline toxicity and classification of specific modes of action of ionizable organic chemicals in the zebrafish embryo toxicity test.
    Klüver N; Bittermann K; Escher BI
    Aquat Toxicol; 2019 Feb; 207():110-119. PubMed ID: 30557756
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Physicochemical properties/descriptors governing the solubility and partitioning of chemicals in water-solvent-gas systems. Part 1. Partitioning between octanol and air.
    Raevsky OA; Grigor'ev VJ; Raevskaja OE; Schaper KJ
    SAR QSAR Environ Res; 2006 Jun; 17(3):285-97. PubMed ID: 16815768
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Estimating the toxicities of organic chemicals to bioluminescent bacteria and activated sludge.
    Ren S; Frymier PD
    Water Res; 2002 Oct; 36(17):4406-14. PubMed ID: 12420944
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.