BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 7967221)

  • 1. Responses of contractile properties in rat soleus to high-energy phosphates and/or unloading.
    Wakatsuki T; Ohira Y; Yasui W; Nakamura K; Asakura T; Ohno H; Yamamoto M
    Jpn J Physiol; 1994; 44(2):193-204. PubMed ID: 7967221
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes of contractile properties of extensor digitorum longus in response to creatine-analogue administration and/or hindlimb suspension in rats.
    Wakatsuki T; Ohira Y; Nakamura K; Asakura T; Ohno H; Yamamoto M
    Jpn J Physiol; 1995; 45(6):979-89. PubMed ID: 8676581
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contractile properties of rat skeletal muscles after hindlimb unloading and beta-GPA administration.
    Nasledov GA; Arutyunyan RS; Nemirovskaya TL; Shenkman BS; Kozlovskaya IB
    J Gravit Physiol; 1996 Sep; 3(2):11-2. PubMed ID: 11540263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Responses of beta-adrenoceptor in rat soleus to phosphorus compound levels and/or unloading.
    Ohira Y; Saito K; Wakatsuki T; Yasui W; Suetsugu T; Nakamura K; Tanaka H; Asakura T
    Am J Physiol; 1994 May; 266(5 Pt 1):C1257-62. PubMed ID: 8203490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of muscle creatine content manipulation on contractile properties in mouse muscles.
    Eijnde BO; Lebacq J; Ramaekers M; Hespel P
    Muscle Nerve; 2004 Mar; 29(3):428-35. PubMed ID: 14981743
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Β-GPA administration activates slow oxidative muscle signaling pathways and protects soleus muscle against the increased fatigue under 7-days of rat hindlimb suspension.
    Sharlo KA; Lvova ID; Sidorenko DA; Tyganov SA; Sharlo DT; Shenkman BS
    Arch Biochem Biophys; 2023 Jul; 743():109647. PubMed ID: 37230367
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved fatigue resistance not associated with maximum oxygen consumption in creatine-depleted rats.
    Tanaka T; Ohira Y; Danda M; Hatta H; Nishi I
    J Appl Physiol (1985); 1997 Jun; 82(6):1911-7. PubMed ID: 9173958
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermogenic responses to high-energy phosphate contents and/or hindlimb suspension in rats.
    Wakatsuki T; Hirata F; Ohno H; Yamamoto M; Sato Y; Ohira Y
    Jpn J Physiol; 1996 Apr; 46(2):171-5. PubMed ID: 8832335
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic modulation of muscle fiber properties unrelated to mechanical stimuli.
    Ohira Y; Kawano F; Roy RR; Edgerton VR
    Jpn J Physiol; 2003 Dec; 53(6):389-400. PubMed ID: 15038837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tetanic contraction induces enhancement of fatigability and sarcomeric damage in atrophic skeletal muscle and its underlying molecular mechanisms.
    Yu ZB
    Zhongguo Ying Yong Sheng Li Xue Za Zhi; 2013 Nov; 29(6):525-33. PubMed ID: 24654535
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical properties of rat skeletal muscle after hind limb suspension.
    Winiarski AM; Roy RR; Alford EK; Chiang PC; Edgerton VR
    Exp Neurol; 1987 Jun; 96(3):650-60. PubMed ID: 3582550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphagen and intracellular pH changes during contraction of creatine-depleted rat muscle.
    Meyer RA; Brown TR; Krilowicz BL; Kushmerick MJ
    Am J Physiol; 1986 Feb; 250(2 Pt 1):C264-74. PubMed ID: 3953780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Contractile properties of the isolated rat musculus soleus and single skinned soleus fibers at the early stage of gravitational unloading: facts and hypotheses].
    Ponomareva EV; Kravtsova VV; Kachaeva EV; Altaeva EG; Vikhliantsev IM; Podlubnaia ZA; Krivoĭ II; Shenkman BS
    Biofizika; 2008; 53(6):1087-94. PubMed ID: 19137697
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of the creatine analogue beta-guanidinopropionic acid on skeletal muscles of mice deficient in muscle creatine kinase.
    van Deursen J; Jap P; Heerschap A; ter Laak H; Ruitenbeek W; Wieringa B
    Biochim Biophys Acta; 1994 May; 1185(3):327-35. PubMed ID: 8180237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of carbonic anhydrase inhibitors on contraction, intracellular pH and energy-rich phosphates of rat skeletal muscle.
    Geers C; Gros G
    J Physiol; 1990 Apr; 423():279-97. PubMed ID: 2388152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptation of rat skeletal muscle to creatine depletion: AMP deaminase and AMP deamination.
    Ren JM; Holloszy JO
    J Appl Physiol (1985); 1992 Dec; 73(6):2713-6. PubMed ID: 1490990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of skeletal muscle dihydropyridine receptor gene expression by biomechanical unloading.
    Kandarian S; O'Brien S; Thomas K; Schulte L; Navarro J
    J Appl Physiol (1985); 1992 Jun; 72(6):2510-4. PubMed ID: 1321113
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compensatory effects of chronic electrostimulation on unweighted rat soleus muscle.
    Leterme D; Falempin M
    Pflugers Arch; 1994 Jan; 426(1-2):155-60. PubMed ID: 8146018
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biochemical adaptation in the skeletal muscle of rats depleted of creatine with the substrate analogue beta-guanidinopropionic acid.
    Shoubridge EA; Challiss RA; Hayes DJ; Radda GK
    Biochem J; 1985 Nov; 232(1):125-31. PubMed ID: 4084222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of a short-term dietary creatine supplementation on high-energy phosphates in the rat myocardium.
    Brzezińska Z; Nazar K; Kaciuba-Uściłko H; Falecka-Wieczorek I; Wójcik-Ziółkowska E
    J Physiol Pharmacol; 1998 Dec; 49(4):591-5. PubMed ID: 10069699
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.