BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 7968457)

  • 1. Macrophages in mice acutely infected with lymphocytic choriomeningitis virus are primed for nitric oxide synthesis.
    Butz EA; Hostager BS; Southern PJ
    Microb Pathog; 1994 Apr; 16(4):283-95. PubMed ID: 7968457
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitric oxide production by splenic macrophages is not responsible for T cell suppression during acute infection with lactate dehydrogenase-elevating virus.
    Rowland RR; Butz EA; Plagemann PG
    J Immunol; 1994 Jun; 152(12):5785-95. PubMed ID: 8207208
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Suppressor macrophages in African trypanosomiasis inhibit T cell proliferative responses by nitric oxide and prostaglandins.
    Schleifer KW; Mansfield JM
    J Immunol; 1993 Nov; 151(10):5492-503. PubMed ID: 8228241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the immunosuppressive effects of nitric oxide in graft vs host disease.
    Hoffman RA; Langrehr JM; Wren SM; Dull KE; Ildstad ST; McCarthy SA; Simmons RL
    J Immunol; 1993 Aug; 151(3):1508-18. PubMed ID: 8335943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitric oxide production from a macrophage cell line: interaction with autologous and allogeneic lymphocytes.
    Isobe K; Nakashima I
    J Cell Biochem; 1993 Nov; 53(3):198-205. PubMed ID: 8263036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-affinity cytotoxic T-lymphocytes require IFN-gamma to clear an acute viral infection.
    Von Herrath MG; Coon B; Oldstone MB
    Virology; 1997 Mar; 229(2):349-59. PubMed ID: 9126248
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immunoregulatory role of nitric oxide in Legionella pneumophila-infected macrophages.
    Yamamoto Y; Klein TW; Friedman H
    Cell Immunol; 1996 Aug; 171(2):231-9. PubMed ID: 8806792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immunosuppression induced by nitric oxide and its inhibition by interleukin-4.
    al-Ramadi BK; Meissler JJ; Huang D; Eisenstein TK
    Eur J Immunol; 1992 Sep; 22(9):2249-54. PubMed ID: 1516618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular basis of "suppressor" macrophages. Arginine metabolism via the nitric oxide synthetase pathway.
    Mills CD
    J Immunol; 1991 Apr; 146(8):2719-23. PubMed ID: 1707918
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitric oxide production is required for murine resident peritoneal macrophages to suppress mitogen-stimulated T cell proliferation. Role of IFN-gamma in the induction of the nitric oxide-synthesizing pathway.
    Albina JE; Abate JA; Henry WL
    J Immunol; 1991 Jul; 147(1):144-8. PubMed ID: 1904899
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Suppression of nitric oxide generated by inflammatory macrophages by calcitonin gene-related peptide in aqueous humor.
    Taylor AW; Yee DG; Streilein JW
    Invest Ophthalmol Vis Sci; 1998 Jul; 39(8):1372-8. PubMed ID: 9660485
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of hepatic endothelial cell and macrophage proliferation and nitric oxide production by GM-CSF, M-CSF, and IL-1 beta following acute endotoxemia.
    Feder LS; Laskin DL
    J Leukoc Biol; 1994 Apr; 55(4):507-13. PubMed ID: 8145021
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [TH1 response in the experimental infection with Trypanosoma cruzi].
    Cardoni RL; Antúnez MI; Abrami AA
    Medicina (B Aires); 1999; 59 Suppl 2():84-90. PubMed ID: 10668248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of nitric oxide (NO) is not essential for protection against acute Toxoplasma gondii infection in IRF-1-/- mice.
    Khan IA; Matsuura T; Fonseka S; Kasper LH
    J Immunol; 1996 Jan; 156(2):636-43. PubMed ID: 8543815
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of NO in macrophage dysfunction at early stage after burn injury.
    Luo G; Peng D; Zheng J; Chen X; Wu J; Elster E; Tadaki D
    Burns; 2005 Mar; 31(2):138-44. PubMed ID: 15683683
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activated macrophages destroy intracellular Leishmania major amastigotes by an L-arginine-dependent killing mechanism.
    Green SJ; Meltzer MS; Hibbs JB; Nacy CA
    J Immunol; 1990 Jan; 144(1):278-83. PubMed ID: 2104889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitric oxide mediates suppression of T cell responses in murine Trypanosoma brucei infection.
    Sternberg J; McGuigan F
    Eur J Immunol; 1992 Oct; 22(10):2741-4. PubMed ID: 1396977
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Macrophage cytostatic effect on Trypanosoma musculi involves an L-arginine-dependent mechanism.
    Vincendeau P; Daulouède S
    J Immunol; 1991 Jun; 146(12):4338-43. PubMed ID: 1904079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple mechanisms contribute to impairment of type 1 interferon production during chronic lymphocytic choriomeningitis virus infection of mice.
    Lee LN; Burke S; Montoya M; Borrow P
    J Immunol; 2009 Jun; 182(11):7178-89. PubMed ID: 19454715
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reovirus infection in chickens primes splenic adherent macrophages to produce nitric oxide in response to T cell-produced factors.
    Pertile TL; Sharma JM; Walser MM
    Cell Immunol; 1995 Sep; 164(2):207-16. PubMed ID: 7656329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.