These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 7968730)

  • 21. Modulation of creatine kinase activity by ruthenium complexes.
    Zanette F; Victor EG; Scaini G; Di-Pietro PB; Cardoso DC; Cristiano MP; Dal-Pizzol F; Paula MM; Streck EL
    J Inorg Biochem; 2007 Feb; 101(2):267-73. PubMed ID: 17109965
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 31P-NMR-measured creatine kinase reaction flux in muscle: a caveat!
    Wallimann T
    J Muscle Res Cell Motil; 1996 Apr; 17(2):177-81. PubMed ID: 8793720
    [No Abstract]   [Full Text] [Related]  

  • 23. Muscle biopsy in the evaluation of patients with modestly elevated creatine kinase levels.
    Simmons Z; Peterlin BL; Boyer PJ; Towfighi J
    Muscle Nerve; 2003 Feb; 27(2):242-4. PubMed ID: 12548533
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Creatine kinase knockout mice--what is the phenotype: skeletal muscle.
    in 't Zandt HJ; Wieringa B; Heerschap A
    MAGMA; 1998 Sep; 6(2-3):122-3. PubMed ID: 9803381
    [No Abstract]   [Full Text] [Related]  

  • 25. Inhibition of the electron transport chain and creatine kinase activity by ethylmalonic acid in human skeletal muscle.
    Barschak AG; Ferreira Gda C; André KR; Schuck PF; Viegas CM; Tonin A; Dutra Filho CS; Wyse AT; Wannmacher CM; Vargas CR; Wajner M
    Metab Brain Dis; 2006 Mar; 21(1):11-9. PubMed ID: 16773466
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Impact of testosterone and oestradiol on region specificity of skeletal muscle-ATP, creatine phosphokinase and myokinase in male and female Wistar rats.
    Ramamani A; Aruldhas MM; Govindarajulu P
    Acta Physiol Scand; 1999 Jun; 166(2):91-7. PubMed ID: 10383487
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Interaction between glycogen phosphorylase b and creatinine kinase from rabbit skeletal muscle].
    Khakimova AK; Skolysheva LK; Shur SA; Vul'fson IL
    Biokhimiia; 1995 Feb; 60(2):278-88. PubMed ID: 7718669
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 31P NMR saturation transfer study of the creatine kinase reaction in human skeletal muscle at rest and during exercise.
    Goudemant JF; Francaux M; Mottet I; Demeure R; Sibomana M; Sturbois X
    Magn Reson Med; 1997 May; 37(5):744-53. PubMed ID: 9126949
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dual regulation of the AMP-activated protein kinase provides a novel mechanism for the control of creatine kinase in skeletal muscle.
    Ponticos M; Lu QL; Morgan JE; Hardie DG; Partridge TA; Carling D
    EMBO J; 1998 Mar; 17(6):1688-99. PubMed ID: 9501090
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Creatine kinase (CK)].
    Shoji S
    Nihon Rinsho; 1995 May; 53(5):1136-40. PubMed ID: 7602768
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The action of phenazine methosulphate in causing cellular damage in the isolated mouse soleus muscle preparation.
    McCall KE; Duncan CJ
    Pathobiology; 1995; 63(5):278-82. PubMed ID: 8724210
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Two-state irreversible thermal denaturation of muscle creatine kinase.
    Lyubarev AE; Kurganov BI; Orlov VN; Zhou HM
    Biophys Chem; 1999 Jun; 79(3):199-204. PubMed ID: 10443013
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Creatine supplementation: exploring the role of the creatine kinase/phosphocreatine system in human muscle.
    Hespel P; Eijnde BO; Derave W; Richter EA
    Can J Appl Physiol; 2001; 26 Suppl():S79-102. PubMed ID: 11897886
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Progressive decrease of phosphocreatine, creatine and creatine kinase in skeletal muscle upon transformation to sarcoma.
    Patra S; Bera S; SinhaRoy S; Ghoshal S; Ray S; Basu A; Schlattner U; Wallimann T; Ray M
    FEBS J; 2008 Jun; 275(12):3236-47. PubMed ID: 18485002
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mitochondrial creatine kinase functional development in post-natal rat skeletal muscle. A combined polarographic/31P NMR study.
    Kernec F; Nadal L; Rocher C; Mateo P; de Certaines J; Le Rumeur E
    Mol Cell Biochem; 1999 Apr; 194(1-2):165-71. PubMed ID: 10391136
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mitochondrial creatine kinase: properties and function.
    Lipskaya TY
    Biochemistry (Mosc); 2001 Oct; 66(10):1098-111. PubMed ID: 11736631
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Alterations in AMP deaminase activity and kinetics in skeletal muscle of creatine kinase-deficient mice.
    Tullson PC; Rush JW; Wieringa B; Terjung RL
    Am J Physiol; 1998 May; 274(5):C1411-6. PubMed ID: 9612229
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Differential coupling of smooth and skeletal muscle pyruvate kinase to creatine kinase.
    Sears PR; Dillon PF
    Biochemistry; 1999 Nov; 38(45):14881-6. PubMed ID: 10555970
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mannitol-induced hyperosmolal hyponatraemia.
    Yun JJ; Cheong I
    Intern Med J; 2008 Jan; 38(1):73. PubMed ID: 18190424
    [No Abstract]   [Full Text] [Related]  

  • 40. Proton MR spectroscopy of wild-type and creatine kinase deficient mouse skeletal muscle: dipole-dipole coupling effects and post-mortem changes.
    in 't Zandt HJ; Klomp DW; Oerlemans F; Wieringa B; Hilbers CW; Heerschap A
    Magn Reson Med; 2000 Apr; 43(4):517-24. PubMed ID: 10748426
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.