These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 7972066)

  • 21. Primary and secondary structure of the nuclear small subunit ribosomal RNA of the cryptomonad Pyrenomonas salina as inferred from the gene sequence: evolutionary implications.
    Eschbach S; Wolters J; Sitte P
    J Mol Evol; 1991 Mar; 32(3):247-52. PubMed ID: 1904501
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The number of symbiotic origins of organelles.
    Cavalier-Smith T
    Biosystems; 1992; 28(1-3):91-106; discussion 107-8. PubMed ID: 1292670
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The origin of red algae and cryptomonad nucleomorphs: A comparative phylogeny based on small and large subunit rRNA sequences of Palmaria palmata, Gracilaria verrucosa, and the Guillardia theta nucleomorph.
    Van der Auwera G; Hofmann CJ; De Rijk P; De Wachter R
    Mol Phylogenet Evol; 1998 Dec; 10(3):333-42. PubMed ID: 10051386
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Complete nucleotide sequence of the chlorarachniophyte nucleomorph: nature's smallest nucleus.
    Gilson PR; Su V; Slamovits CH; Reith ME; Keeling PJ; McFadden GI
    Proc Natl Acad Sci U S A; 2006 Jun; 103(25):9566-71. PubMed ID: 16760254
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Kingdom protozoa and its 18 phyla.
    Cavalier-Smith T
    Microbiol Rev; 1993 Dec; 57(4):953-94. PubMed ID: 8302218
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evidence that an amoeba acquired a chloroplast by retaining part of an engulfed eukaryotic alga.
    McFadden GI; Gilson PR; Hofmann CJ; Adcock GJ; Maier UG
    Proc Natl Acad Sci U S A; 1994 Apr; 91(9):3690-4. PubMed ID: 8170970
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evolutionary relationships among the eukaryotic crown taxa taking into account site-to-site rate variation in 18S rRNA.
    Van de Peer Y; De Wachter R
    J Mol Evol; 1997 Dec; 45(6):619-30. PubMed ID: 9419239
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular evolutionary analyses of nuclear-encoded small subunit ribosomal RNA identify an independent rhizopod lineage containing the Euglyphina and the Chlorarachniophyta.
    Bhattacharya D; Helmchen T; Melkonian M
    J Eukaryot Microbiol; 1995; 42(1):65-9. PubMed ID: 7728141
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Eukaryote-eukaryote endosymbioses: insights from studies of a cryptomonad alga.
    Douglas SE
    Biosystems; 1992; 28(1-3):57-68. PubMed ID: 1292667
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Loss of the flagellum happened only once in the fungal lineage: phylogenetic structure of kingdom Fungi inferred from RNA polymerase II subunit genes.
    Liu YJ; Hodson MC; Hall BD
    BMC Evol Biol; 2006 Sep; 6():74. PubMed ID: 17010206
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Substitution rate calibration of small subunit ribosomal RNA identifies chlorarachniophyte endosymbionts as remnants of green algae.
    Van de Peer Y; Rensing SA; Maier UG; De Wachter R
    Proc Natl Acad Sci U S A; 1996 Jul; 93(15):7732-6. PubMed ID: 8755544
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A revised six-kingdom system of life.
    Cavalier-Smith T
    Biol Rev Camb Philos Soc; 1998 Aug; 73(3):203-66. PubMed ID: 9809012
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Plastid genome sequences of Gymnochlora stellata, Lotharella vacuolata, and Partenskyella glossopodia reveal remarkable structural conservation among chlorarachniophyte species.
    Suzuki S; Hirakawa Y; Kofuji R; Sugita M; Ishida KI
    J Plant Res; 2016 Jul; 129(4):581-590. PubMed ID: 26920842
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The phylogeny of the Hyphochytriomycota as deduced from ribosomal RNA sequences of Hyphochytrium catenoides.
    Van der Auwera G; De Baere R; Van de Peer Y; De Rijk P; Van den Broeck I; De Wachter R
    Mol Biol Evol; 1995 Jul; 12(4):671-8. PubMed ID: 7659021
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Going, going, not quite gone: nucleomorphs as a case study in nuclear genome reduction.
    Archibald JM; Lane CE
    J Hered; 2009; 100(5):582-90. PubMed ID: 19617523
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synchroma grande spec. nov. (Synchromophyceae class. nov., Heterokontophyta): an amoeboid marine alga with unique plastid complexes.
    Horn S; Ehlers K; Fritzsch G; Gil-Rodríguez MC; Wilhelm C; Schnetter R
    Protist; 2007 Jul; 158(3):277-93. PubMed ID: 17567535
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Eukaryote kingdoms: seven or nine?
    Cavalier-Smith T
    Biosystems; 1981; 14(3-4):461-81. PubMed ID: 7337818
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Novel nucleomorph genome architecture in the cryptomonad genus hemiselmis.
    Lane CE; Archibald JM
    J Eukaryot Microbiol; 2006; 53(6):515-21. PubMed ID: 17123416
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ancient gene duplication and differential gene flow in plastid lineages: the GroEL/Cpn60 example.
    Wastl J; Fraunholz M; Zauner S; Douglas S; Maier UG
    J Mol Evol; 1999 Jan; 48(1):112-7. PubMed ID: 9873083
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evolution of glutamine synthetase in heterokonts: evidence for endosymbiotic gene transfer and the early evolution of photosynthesis.
    Robertson DL; Tartar A
    Mol Biol Evol; 2006 May; 23(5):1048-55. PubMed ID: 16495348
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.