These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 7972120)

  • 1. Yeast ADA2 protein binds to the VP16 protein activation domain and activates transcription.
    Silverman N; Agapite J; Guarente L
    Proc Natl Acad Sci U S A; 1994 Nov; 91(24):11665-8. PubMed ID: 7972120
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The acidic transcriptional activation domains of herpes virus VP16 and yeast HAP4 have different co-factor requirements.
    Wang L; Turcotte B; Guarente L; Berger SL
    Gene; 1995 Jun; 158(2):163-70. PubMed ID: 7607537
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of physical interactions of the putative transcriptional adaptor, ADA2, with acidic activation domains and TATA-binding protein.
    Barlev NA; Candau R; Wang L; Darpino P; Silverman N; Berger SL
    J Biol Chem; 1995 Aug; 270(33):19337-44. PubMed ID: 7642611
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ADA3, a putative transcriptional adaptor, consists of two separable domains and interacts with ADA2 and GCN5 in a trimeric complex.
    Horiuchi J; Silverman N; Marcus GA; Guarente L
    Mol Cell Biol; 1995 Mar; 15(3):1203-9. PubMed ID: 7862114
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptional activation by DNA-binding derivatives of HSV-1 VP16 that lack the carboxyl-terminal acidic activation domain.
    Popova B; Bilan P; Xiao P; Faught M; Capone JP
    Virology; 1995 May; 209(1):19-28. PubMed ID: 7747469
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ADA3: a gene, identified by resistance to GAL4-VP16, with properties similar to and different from those of ADA2.
    Piña B; Berger S; Marcus GA; Silverman N; Agapite J; Guarente L
    Mol Cell Biol; 1993 Oct; 13(10):5981-9. PubMed ID: 8413201
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Binding of basal transcription factor TFIIH to the acidic activation domains of VP16 and p53.
    Xiao H; Pearson A; Coulombe B; Truant R; Zhang S; Regier JL; Triezenberg SJ; Reinberg D; Flores O; Ingles CJ
    Mol Cell Biol; 1994 Oct; 14(10):7013-24. PubMed ID: 7935417
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and functional analysis of yeast putative adaptors. Evidence for an adaptor complex in vivo.
    Candau R; Berger SL
    J Biol Chem; 1996 Mar; 271(9):5237-45. PubMed ID: 8617808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A highly conserved ATPase protein as a mediator between acidic activation domains and the TATA-binding protein.
    Swaffield JC; Melcher K; Johnston SA
    Nature; 1995 Mar; 374(6517):88-91. PubMed ID: 7870180
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the interaction between the acidic activation domain of VP16 and the RNA polymerase II initiation factor TFIIB.
    Gupta R; Emili A; Pan G; Xiao H; Shales M; Greenblatt J; Ingles CJ
    Nucleic Acids Res; 1996 Jun; 24(12):2324-30. PubMed ID: 8710503
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptional activation by recombinant GAL4-VP16 in the Xenopus oocyte.
    Xu L; Schaffner W; Rungger D
    Nucleic Acids Res; 1993 Jun; 21(11):2775. PubMed ID: 8332481
    [No Abstract]   [Full Text] [Related]  

  • 12. Genetic isolation of ADA2: a potential transcriptional adaptor required for function of certain acidic activation domains.
    Berger SL; Piña B; Silverman N; Marcus GA; Agapite J; Regier JL; Triezenberg SJ; Guarente L
    Cell; 1992 Jul; 70(2):251-65. PubMed ID: 1638630
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The transactivator proteins VP16 and GAL4 bind replication factor A.
    He Z; Brinton BT; Greenblatt J; Hassell JA; Ingles CJ
    Cell; 1993 Jun; 73(6):1223-32. PubMed ID: 8513504
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulating the potency of an activator in a yeast in vitro transcription system.
    Ohashi Y; Brickman JM; Furman E; Middleton B; Carey M
    Mol Cell Biol; 1994 Apr; 14(4):2731-9. PubMed ID: 8139572
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activation of chromosomal DNA replication in Saccharomyces cerevisiae by acidic transcriptional activation domains.
    Li R; Yu DS; Tanaka M; Zheng L; Berger SL; Stillman B
    Mol Cell Biol; 1998 Mar; 18(3):1296-302. PubMed ID: 9488444
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptional activators direct histone acetyltransferase complexes to nucleosomes.
    Utley RT; Ikeda K; Grant PA; Côté J; Steger DJ; Eberharter A; John S; Workman JL
    Nature; 1998 Jul; 394(6692):498-502. PubMed ID: 9697775
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protease footprinting reveals a surface on transcription factor TFIIB that serves as an interface for activators and coactivators.
    Hori R; Pyo S; Carey M
    Proc Natl Acad Sci U S A; 1995 Jun; 92(13):6047-51. PubMed ID: 7597078
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The transcriptional activator GCN4 contains multiple activation domains that are critically dependent on hydrophobic amino acids.
    Drysdale CM; Dueñas E; Jackson BM; Reusser U; Braus GH; Hinnebusch AG
    Mol Cell Biol; 1995 Mar; 15(3):1220-33. PubMed ID: 7862116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SIN3-dependent transcriptional repression by interaction with the Mad1 DNA-binding protein.
    Kasten MM; Ayer DE; Stillman DJ
    Mol Cell Biol; 1996 Aug; 16(8):4215-21. PubMed ID: 8754821
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional similarity and physical association between GCN5 and ADA2: putative transcriptional adaptors.
    Marcus GA; Silverman N; Berger SL; Horiuchi J; Guarente L
    EMBO J; 1994 Oct; 13(20):4807-15. PubMed ID: 7957049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.