These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 7972160)

  • 1. Control of rotating waves in cardiac muscle: analysis of the effect of an electric field.
    Pumir A; Plaza F; Krinsky VI
    Proc Biol Sci; 1994 Aug; 257(1349):129-34. PubMed ID: 7972160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of an externally applied electric field on excitation propagation in the cardiac muscle.
    Pumir A; Plaza F; Krinsky VI
    Chaos; 1994 Sep; 4(3):547-555. PubMed ID: 12780131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Field stimulation of cardiac fibers with random spatial structure.
    Krassowska W
    IEEE Trans Biomed Eng; 2003 Jan; 50(1):33-40. PubMed ID: 12617522
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An electromechanical model of cardiac tissue: constitutive issues and electrophysiological effects.
    Cherubini C; Filippi S; Nardinocchi P; Teresi L
    Prog Biophys Mol Biol; 2008; 97(2-3):562-73. PubMed ID: 18353430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Standing excitation waves in the heart induced by strong alternating electric fields.
    Gray RA; Mornev OA; Jalife J; Aslanidi OV; Pertsov AM
    Phys Rev Lett; 2001 Oct; 87(16):168104. PubMed ID: 11690250
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unpinning of a rotating wave in cardiac muscle by an electric field.
    Pumir A; Krinsky V
    J Theor Biol; 1999 Aug; 199(3):311-9. PubMed ID: 10433895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential distribution in three-dimensional periodic myocardium--Part II: Application to extracellular stimulation.
    Krassowska W; Frazier DW; Pilkington TC; Ideker RE
    IEEE Trans Biomed Eng; 1990 Mar; 37(3):267-84. PubMed ID: 2329001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emitting waves from heterogeneity by a rotating electric field.
    Zhao YH; Lou Q; Chen JX; Sun WG; Ma J; Ying HP
    Chaos; 2013 Sep; 23(3):033141. PubMed ID: 24089977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Numerical Simulation of Propagation of Electric Excitation in the Heart Wall Taking into Account Its Fibrous-Laminar Structure].
    Vasserman IN; Matveenko VP; Shardakov IN; Shestakov AP
    Biofizika; 2015; 60(4):748-57. PubMed ID: 26394475
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vortex shedding as a precursor of turbulent electrical activity in cardiac muscle.
    Cabo C; Pertsov AM; Davidenko JM; Baxter WT; Gray RA; Jalife J
    Biophys J; 1996 Mar; 70(3):1105-11. PubMed ID: 8785270
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined electric field and gap junctions on propagation of action potentials in cardiac muscle and smooth muscle in PSpice simulation.
    Sperelakis N
    J Electrocardiol; 2003 Oct; 36(4):279-93. PubMed ID: 14661164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A model study of electric field interactions between cardiac myocytes.
    Hogues H; Leon LJ; Roberge FA
    IEEE Trans Biomed Eng; 1992 Dec; 39(12):1232-43. PubMed ID: 1487286
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of plunge electrodes during electrical stimulation of cardiac tissue.
    Langrill DM; Roth BJ
    IEEE Trans Biomed Eng; 2001 Oct; 48(10):1207-11. PubMed ID: 11585046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of wave propagation in a biological excitable medium by an external electric field.
    Sebestikova L; Slamova E; Sevcikova H
    Biophys Chem; 2005 Mar; 113(3):269-74. PubMed ID: 15620512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatiotemporal dynamics of damped propagation in excitable cardiac tissue.
    Sidorov VY; Aliev RR; Woods MC; Baudenbacher F; Baudenbacher P; Wikswo JP
    Phys Rev Lett; 2003 Nov; 91(20):208104. PubMed ID: 14683402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electric field interactions between closely abutting excitable cells.
    Sperelakis N; McConnell K
    IEEE Eng Med Biol Mag; 2002; 21(1):77-89. PubMed ID: 11935993
    [No Abstract]   [Full Text] [Related]  

  • 17. Nonuniform muscle fiber orientation causes spiral wave drift in a finite element model of cardiac action potential propagation.
    Rogers JM; McCulloch AD
    J Cardiovasc Electrophysiol; 1994 Jun; 5(6):496-509. PubMed ID: 8087294
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of variation in membrane excitability on propagation velocity of simulated action potentials for cardiac muscle and smooth muscle in the electric field model for cell-to-cell transmission of excitation.
    Sperelakis N; Kalloor B
    IEEE Trans Biomed Eng; 2004 Dec; 51(12):2216-9. PubMed ID: 15605874
    [No Abstract]   [Full Text] [Related]  

  • 19. Reconstruction of propagated electrical activity with a two-dimensional model of anisotropic heart muscle.
    Roberge FA; Vinet A; Victorri B
    Circ Res; 1986 Apr; 58(4):461-75. PubMed ID: 3698214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modelling the periodicity of cardiac muscle.
    Krassowska W; Pilkington TC; Ideker RE
    J Electrocardiol; 1989; 22 Suppl():41-7. PubMed ID: 2614313
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.