BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 7972370)

  • 1. Distance-dependent fluorescence quenching of tryptophan by acrylamide.
    Lakowicz JR; Zelent B; Gryczynski I; Kuśba J; Johnson ML
    Photochem Photobiol; 1994 Sep; 60(3):205-14. PubMed ID: 7972370
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distance-dependent fluorescence quenching ofN-acetyl-L-tryptophanamide by acrylamide.
    Zelent B; Kuśba J; Gryczynski I; Johnson ML; Lakowicz JR
    J Fluoresc; 1993 Sep; 3(3):199-207. PubMed ID: 24234834
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time-resolved and steady-state fluorescence quenching of N-acetyl-L-tryptophanamide by acrylamide and iodide.
    Zelent B; Kuśba J; Gryczynski I; Johnson ML; Lakowicz JR
    Biophys Chem; 1998 Jul; 73(1-2):53-75. PubMed ID: 9697300
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diffusion coefficients of quenchers in proteins from transient effects in the intensity decays.
    Lakowicz JR; Joshi NB; Johnson ML; Szmacinski H; Gryczynski I
    J Biol Chem; 1987 Aug; 262(23):10907-10. PubMed ID: 3611095
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acrylamide and oxygen fluorescence quenching studies with liver alcohol dehydrogenase using steady-state and phase fluorometry.
    Eftink MR; Jameson DM
    Biochemistry; 1982 Aug; 21(18):4443-9. PubMed ID: 6751389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acrylamide quenching of Yt-base fluorescence in aqueous solution.
    Gryczynski I; Johnson ML; Lakowicz JR
    Biophys Chem; 1988 Sep; 31(3):269-74. PubMed ID: 3233300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distance-dependent quenching of Nile Blue fluorescence byN,N-diethylaniline observed by frequency-domain fluorometry.
    Lakowicz JR; Zelent B; Kuśba J; Gryczynski I
    J Fluoresc; 1996 Dec; 6(4):187-94. PubMed ID: 24227341
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of tryptophan residues of cytochrome P450scc with a highly specific fluorescence quencher, a substrate analogue, compared to acrylamide and iodide.
    Lange R; Anzenbacher P; Müller S; Maurin L; Balny C
    Eur J Biochem; 1994 Dec; 226(3):963-70. PubMed ID: 7813487
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A photoreversible conformational change in 124 kDa Avena phytochrome.
    Singh BR; Chai YG; Song PS; Lee J; Robinson GW
    Biochim Biophys Acta; 1988 Dec; 936(3):395-405. PubMed ID: 3196711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acrylamide quenching of tryptophan photochemistry and photophysics.
    Tallmadge DH; Huebner JS; Borkman RF
    Photochem Photobiol; 1989 Apr; 49(4):381-6. PubMed ID: 2727078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Viscosity dependence of acrylamide quenching of ribonuclease T1 fluorescence. The gating mechanism.
    Somogyi B; Norman JA; Punyiczki M; Rosenberg A
    Biochim Biophys Acta; 1992 Feb; 1119(1):81-9. PubMed ID: 1540639
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A study of tryptophan fluorescence quenching of bifunctional alginate lyase from a marine bacterium Pseudoalteromonas sp. strain No. 272 by acrylamide.
    Iwamoto Y; Hidaka H; Oda T; Muramatsu T
    Biosci Biotechnol Biochem; 2003 Sep; 67(9):1990-2. PubMed ID: 14519987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anisotropy decays of single tryptophan proteins measured by GHz frequency-domain fluorometry with collisional quenching.
    Lakowicz JR; Gryczynski I; Szmacinski H; Cherek H; Joshi N
    Eur Biophys J; 1991; 19(3):125-40. PubMed ID: 1647947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accessibilities of the sulfhydryl groups of native and photooxidized lens crystallins: a fluorescence lifetime and quenching study.
    Andley UP; Clark BA
    Biochemistry; 1988 Jan; 27(2):810-20. PubMed ID: 3349065
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acrylamide quenching of the fluorescence of glyceraldehyde-3-phosphate dehydrogenase: reversible and irreversible effects.
    Bastyns K; Engelborghs Y
    Photochem Photobiol; 1992 Jan; 55(1):9-16. PubMed ID: 1603853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transient Effects in Fluorescence Quenching Measured by 2-GHz Frequency-Domain Fluorometry.
    Lakowicz JR; Johnson ML; Gryczynski I; Joshi N; Laczko G
    J Phys Chem; 1987 Jun; 91(12):3277-3285. PubMed ID: 31908358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescence lifetime and solute quenching studies with the single tryptophan containing protein parvalbumin from codfish.
    Eftink MR; Wasylewski Z
    Biochemistry; 1989 Jan; 28(1):382-91. PubMed ID: 2706263
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tryptophan fluorescence quenching in rabbit skeletal myosin rod.
    Chang YC; Ludescher RD
    Biophys Chem; 1993 Nov; 48(1):49-59. PubMed ID: 8257767
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Static quenching of tryptophan fluorescence by oxidized dithiothreitol.
    Sanyal G; Kim E; Thompson FM; Brady EK
    Biochem Biophys Res Commun; 1989 Dec; 165(2):772-81. PubMed ID: 2597159
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescence quenching of the buried tryptophan residue of cod parvalbumin.
    Eftink MR; Hagaman KA
    Biophys Chem; 1985 Aug; 22(3):173-80. PubMed ID: 4052574
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.