These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 7972370)

  • 1. Distance-dependent fluorescence quenching of tryptophan by acrylamide.
    Lakowicz JR; Zelent B; Gryczynski I; Kuśba J; Johnson ML
    Photochem Photobiol; 1994 Sep; 60(3):205-14. PubMed ID: 7972370
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distance-dependent fluorescence quenching ofN-acetyl-L-tryptophanamide by acrylamide.
    Zelent B; Kuśba J; Gryczynski I; Johnson ML; Lakowicz JR
    J Fluoresc; 1993 Sep; 3(3):199-207. PubMed ID: 24234834
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time-resolved and steady-state fluorescence quenching of N-acetyl-L-tryptophanamide by acrylamide and iodide.
    Zelent B; Kuśba J; Gryczynski I; Johnson ML; Lakowicz JR
    Biophys Chem; 1998 Jul; 73(1-2):53-75. PubMed ID: 9697300
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diffusion coefficients of quenchers in proteins from transient effects in the intensity decays.
    Lakowicz JR; Joshi NB; Johnson ML; Szmacinski H; Gryczynski I
    J Biol Chem; 1987 Aug; 262(23):10907-10. PubMed ID: 3611095
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acrylamide and oxygen fluorescence quenching studies with liver alcohol dehydrogenase using steady-state and phase fluorometry.
    Eftink MR; Jameson DM
    Biochemistry; 1982 Aug; 21(18):4443-9. PubMed ID: 6751389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acrylamide quenching of Yt-base fluorescence in aqueous solution.
    Gryczynski I; Johnson ML; Lakowicz JR
    Biophys Chem; 1988 Sep; 31(3):269-74. PubMed ID: 3233300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distance-dependent quenching of Nile Blue fluorescence byN,N-diethylaniline observed by frequency-domain fluorometry.
    Lakowicz JR; Zelent B; Kuśba J; Gryczynski I
    J Fluoresc; 1996 Dec; 6(4):187-94. PubMed ID: 24227341
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of tryptophan residues of cytochrome P450scc with a highly specific fluorescence quencher, a substrate analogue, compared to acrylamide and iodide.
    Lange R; Anzenbacher P; Müller S; Maurin L; Balny C
    Eur J Biochem; 1994 Dec; 226(3):963-70. PubMed ID: 7813487
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A photoreversible conformational change in 124 kDa Avena phytochrome.
    Singh BR; Chai YG; Song PS; Lee J; Robinson GW
    Biochim Biophys Acta; 1988 Dec; 936(3):395-405. PubMed ID: 3196711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acrylamide quenching of tryptophan photochemistry and photophysics.
    Tallmadge DH; Huebner JS; Borkman RF
    Photochem Photobiol; 1989 Apr; 49(4):381-6. PubMed ID: 2727078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Viscosity dependence of acrylamide quenching of ribonuclease T1 fluorescence. The gating mechanism.
    Somogyi B; Norman JA; Punyiczki M; Rosenberg A
    Biochim Biophys Acta; 1992 Feb; 1119(1):81-9. PubMed ID: 1540639
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A study of tryptophan fluorescence quenching of bifunctional alginate lyase from a marine bacterium Pseudoalteromonas sp. strain No. 272 by acrylamide.
    Iwamoto Y; Hidaka H; Oda T; Muramatsu T
    Biosci Biotechnol Biochem; 2003 Sep; 67(9):1990-2. PubMed ID: 14519987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accessibilities of the sulfhydryl groups of native and photooxidized lens crystallins: a fluorescence lifetime and quenching study.
    Andley UP; Clark BA
    Biochemistry; 1988 Jan; 27(2):810-20. PubMed ID: 3349065
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anisotropy decays of single tryptophan proteins measured by GHz frequency-domain fluorometry with collisional quenching.
    Lakowicz JR; Gryczynski I; Szmacinski H; Cherek H; Joshi N
    Eur Biophys J; 1991; 19(3):125-40. PubMed ID: 1647947
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acrylamide quenching of the fluorescence of glyceraldehyde-3-phosphate dehydrogenase: reversible and irreversible effects.
    Bastyns K; Engelborghs Y
    Photochem Photobiol; 1992 Jan; 55(1):9-16. PubMed ID: 1603853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescence lifetime and solute quenching studies with the single tryptophan containing protein parvalbumin from codfish.
    Eftink MR; Wasylewski Z
    Biochemistry; 1989 Jan; 28(1):382-91. PubMed ID: 2706263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tryptophan fluorescence quenching in rabbit skeletal myosin rod.
    Chang YC; Ludescher RD
    Biophys Chem; 1993 Nov; 48(1):49-59. PubMed ID: 8257767
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Static quenching of tryptophan fluorescence by oxidized dithiothreitol.
    Sanyal G; Kim E; Thompson FM; Brady EK
    Biochem Biophys Res Commun; 1989 Dec; 165(2):772-81. PubMed ID: 2597159
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescence quenching of the buried tryptophan residue of cod parvalbumin.
    Eftink MR; Hagaman KA
    Biophys Chem; 1985 Aug; 22(3):173-80. PubMed ID: 4052574
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quenching by acrylamide and temperature of a fluorescent probe attached to the active site of ribonuclease.
    Jullien M; Garel JR; Merola F; Brochon JC
    Eur Biophys J; 1986; 13(3):131-7. PubMed ID: 3956444
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.