These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

39 related articles for article (PubMed ID: 7972509)

  • 1. Wali6 and wali7. Genes induced by aluminum in wheat (Triticum aestivum L.) roots.
    Richards KD; Snowden KC; Gardner RC
    Plant Physiol; 1994 Aug; 105(4):1455-6. PubMed ID: 7972509
    [No Abstract]   [Full Text] [Related]  

  • 2. TaANR1-TaMADS25 module regulates lignin biosynthesis and root development in wheat (Triticum aestivum L.).
    Xu W; Chen Y; Liu B; Li Q; Zhou Y; Li X; Guo W; Hu Z; Liu Z; Xin M; Yao Y; You M; Peng H; Ni Z; Xing J
    J Genet Genomics; 2023 Nov; 50(11):917-920. PubMed ID: 37666357
    [No Abstract]   [Full Text] [Related]  

  • 3. A sense of self: the role of DNA sequence elimination in allopolyploidization.
    Eckardt NA
    Plant Cell; 2001 Aug; 13(8):1699-704. PubMed ID: 11487685
    [No Abstract]   [Full Text] [Related]  

  • 4. Proteolytic and Structural Changes in Rye and Triticale Roots under Aluminum Stress.
    Szewińska J; Różańska E; Papierowska E; Labudda M
    Cells; 2021 Nov; 10(11):. PubMed ID: 34831267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extensive structural variation in the Bowman-Birk inhibitor family in common wheat (Triticum aestivum L.).
    Xie Y; Ravet K; Pearce S
    BMC Genomics; 2021 Mar; 22(1):218. PubMed ID: 33765923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kunitz Proteinase Inhibitors Limit Water Stress Responses in White Clover (
    Islam A; Leung S; Nikmatullah A; Dijkwel PP; McManus MT
    Front Plant Sci; 2017; 8():1683. PubMed ID: 29046678
    [TBL] [Abstract][Full Text] [Related]  

  • 7. iTRAQ and virus-induced gene silencing revealed three proteins involved in cold response in bread wheat.
    Zhang N; Zhang L; Zhao L; Ren Y; Cui D; Chen J; Wang Y; Yu P; Chen F
    Sci Rep; 2017 Aug; 7(1):7524. PubMed ID: 28790462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a laser capture microscope-based single-cell-type proteomics tool for studying proteomes of individual cell layers of plant roots.
    Zhu Y; Li H; Bhatti S; Zhou S; Yang Y; Fish T; Thannhauser TW
    Hortic Res; 2016; 3():16026. PubMed ID: 27280026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of ovary induction on bread wheat anther culture: ovary genotype and developmental stage, and candidate gene association.
    Castillo AM; Sánchez-Díaz RA; Vallés MP
    Front Plant Sci; 2015; 6():402. PubMed ID: 26150821
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microspore embryogenesis in wheat: new marker genes for early, middle and late stages of embryo development.
    Sánchez-Díaz RA; Castillo AM; Vallés MP
    Plant Reprod; 2013 Sep; 26(3):287-96. PubMed ID: 23839308
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparative analysis of proteins that accumulate during the initial stage of root hair development in barley root hair mutants and their parent varieties.
    Janiak A; Piórko S; Matros A; Mock HP; Kwaśniewski M; Chwiałkowska K; Chmielewska B; Szarejko I
    J Appl Genet; 2012 Nov; 53(4):363-76. PubMed ID: 22847350
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arabidopsis and the genetic potential for the phytoremediation of toxic elemental and organic pollutants.
    Cobbett CS; Meagher RB
    Arabidopsis Book; 2002; 1():e0032. PubMed ID: 22303204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of genes and pathways associated with aluminum stress and tolerance using transcriptome profiling of wheat near-isogenic lines.
    Houde M; Diallo AO
    BMC Genomics; 2008 Aug; 9():400. PubMed ID: 18752686
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction network of proteins associated with abiotic stress response and development in wheat.
    Tardif G; Kane NA; Adam H; Labrie L; Major G; Gulick P; Sarhan F; Laliberté JF
    Plant Mol Biol; 2007 Mar; 63(5):703-18. PubMed ID: 17211514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of molecular markers for aluminium tolerance in diploid oat through comparative mapping and QTL analysis.
    Wight CP; Kibite S; Tinker NA; Molnar SJ
    Theor Appl Genet; 2006 Jan; 112(2):222-31. PubMed ID: 16323000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expressed sequence tag-based gene expression analysis under aluminum stress in rye.
    Milla MA; Butler E; Huete AR; Wilson CF; Anderson O; Gustafson JP
    Plant Physiol; 2002 Dec; 130(4):1706-16. PubMed ID: 12481053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aluminum-Induced Genes (Induction by Toxic Metals, Low Calcium, and Wounding and Pattern of Expression in Root Tips).
    Snowden KC; Richards KD; Gardner RC
    Plant Physiol; 1995 Feb; 107(2):341-348. PubMed ID: 12228362
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aluminum Toxicity and Tolerance in Plants.
    Delhaize E; Ryan PR
    Plant Physiol; 1995 Feb; 107(2):315-321. PubMed ID: 12228360
    [No Abstract]   [Full Text] [Related]  

  • 19. Al Inhibits Both Shoot Development and Root Growth in als3, an Al-Sensitive Arabidopsis Mutant.
    Larsen PB; Kochian LV; Howell SH
    Plant Physiol; 1997 Aug; 114(4):1207-1214. PubMed ID: 12223767
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Al-Induced, 51-Kilodalton, Membrane-Bound Proteins Are Associated with Resistance to Al in a Segregating Population of Wheat.
    Taylor GJ; Basu A; Basu U; Slaski JJ; Zhang G; Good A
    Plant Physiol; 1997 May; 114(1):363-372. PubMed ID: 12223709
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 2.