These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 7972951)

  • 1. Measures of compounding conservatism in probabilistic risk assessment.
    Cullen AC
    Risk Anal; 1994 Aug; 14(4):389-93. PubMed ID: 7972951
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probabilistic biosphere modeling for the long-term safety assessment of geological disposal facilities for radioactive waste using first- and second-order Monte Carlo simulation.
    Ciecior W; Röhlig KJ; Kirchner G
    J Environ Radioact; 2018 Oct; 190-191():10-19. PubMed ID: 29734123
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probabilistic dose-response modeling: case study using dichloromethane PBPK model results.
    Marino DJ; Starr TB
    Regul Toxicol Pharmacol; 2007 Dec; 49(3):285-300. PubMed ID: 17949874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparing deterministic and probabilistic risk assessments for sites contaminated by polycyclic aromatic hydrocarbons (PAHs).
    Bruce ED; Abusalih AA; McDonald TJ; Autenrieth RL
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 May; 42(6):697-706. PubMed ID: 17473995
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The use of toxic equivalency factor distributions in probabilistic risk assessments for dioxins, furans, and PCBs.
    Finley BL; Connor KT; Scott PK
    J Toxicol Environ Health A; 2003 Mar; 66(6):533-50. PubMed ID: 12712595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uncertain numbers and uncertainty in the selection of input distributions--consequences for a probabilistic risk assessment of contaminated land.
    Sander P; Bergbäck B; Oberg T
    Risk Anal; 2006 Oct; 26(5):1363-75. PubMed ID: 17054537
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probabilistic framework for the estimation of the adult and child toxicokinetic intraspecies uncertainty factors.
    Pelekis M; Nicolich MJ; Gauthier JS
    Risk Anal; 2003 Dec; 23(6):1239-55. PubMed ID: 14641898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. User subjectivity in Monte Carlo modeling of pesticide exposure.
    Beulke S; Brown CD; Dubus IG; Galicia H; Jarvis N; Schaefer D; Trevisan M
    Environ Toxicol Chem; 2006 Aug; 25(8):2227-36. PubMed ID: 16916043
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Joint propagation of variability and imprecision in assessing the risk of groundwater contamination.
    Baudrit C; Guyonnet D; Dubois D
    J Contam Hydrol; 2007 Aug; 93(1-4):72-84. PubMed ID: 17321003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A probabilistic effect assessment model for hazardous substances at the workplace.
    Schneider K; Schuhmacher-Wolz U; Hassauer M; Darschnik S; Elmshäuser E; Mosbach-Schulz O
    Regul Toxicol Pharmacol; 2006 Mar; 44(2):172-81. PubMed ID: 16356615
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Percentiles of the product of uncertainty factors for establishing probabilistic reference doses.
    Gaylor DW; Kodell RL
    Risk Anal; 2000 Apr; 20(2):245-50. PubMed ID: 10859783
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integration of probabilistic exposure assessment and probabilistic hazard characterization.
    van der Voet H; Slob W
    Risk Anal; 2007 Apr; 27(2):351-71. PubMed ID: 17511703
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeled estimates of chlorpyrifos exposure and dose for the Minnesota and Arizona NHEXAS populations.
    Buck RJ; Ozkaynak H; Xue J; Zartarian VG; Hammerstrom K
    J Expo Anal Environ Epidemiol; 2001; 11(3):253-68. PubMed ID: 11477522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using Monte Carlo simulations in public health risk assessments: estimating and presenting full distributions of risk.
    Burmaster DE; von Stackelberg K
    J Expo Anal Environ Epidemiol; 1991 Oct; 1(4):491-512. PubMed ID: 1824330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of a unified probabilistic framework to the dose-response assessment of acrolein.
    Blessinger T; Davis A; Chiu WA; Stanek J; Woodall GM; Gift J; Thayer KA; Bussard D
    Environ Int; 2020 Oct; 143():105953. PubMed ID: 32768806
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of Monte Carlo simulation for human exposure assessment at a superfund site.
    Smith RL
    Risk Anal; 1994 Aug; 14(4):433-9. PubMed ID: 7972953
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation of interindividual pharmacokinetic variability factor for inhaled volatile organic chemicals using a probability-bounds approach.
    Nong A; Krishnan K
    Regul Toxicol Pharmacol; 2007 Jun; 48(1):93-101. PubMed ID: 17367907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. APROBA-Plus: A probabilistic tool to evaluate and express uncertainty in hazard characterization and exposure assessment of substances.
    Bokkers BGH; Mengelers MJ; Bakker MI; Chiu WA; Slob W
    Food Chem Toxicol; 2017 Dec; 110():408-417. PubMed ID: 29074418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probabilistic migration modelling focused on functional barrier efficiency and low migration concepts in support of risk assessment.
    Brandsch R
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2017 Oct; 34(10):1743-1766. PubMed ID: 28583013
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a standard soil-to-skin adherence probability density function for use in Monte Carlo analyses of dermal exposure.
    Finley BL; Scott PK; Mayhall DA
    Risk Anal; 1994 Aug; 14(4):555-69. PubMed ID: 7972958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.