These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 797388)
1. A study of the influence of magnesium ions on the conformation of ribosomal ribonucleic acid and on the stability of the larger subribosomal particle of rabbit reticulocytes. Cox RA; Hirst W Biochem J; 1976 Dec; 160(3):505-19. PubMed ID: 797388 [TBL] [Abstract][Full Text] [Related]
2. A study of the thermal stability of ribosomes and biologically active subribosomal particles. Cox RA; Pratt H; Huvos P; Higginson B; Hirst W Biochem J; 1973 Jul; 134(3):775-93. PubMed ID: 4584137 [TBL] [Abstract][Full Text] [Related]
3. Re-activation of the peptidyltransferase centre of rabbit reticulocyte ribosomes after inactivation by exposure to low concentrations of magnesium ion. Cox RA; Greenwell P; Hirst W Biochem J; 1976 Dec; 160(3):521-31. PubMed ID: 1016237 [TBL] [Abstract][Full Text] [Related]
4. Secondary structure features of ribosomal RNA species within intact ribosomal subunits and efficiency of RNA-protein interactions in thermoacidophilic (Caldariella acidophila, Bacillus acidocaldarius) and mesophilic (Escherichia coli) bacteria. Cammarano P; Mazzei F; Londei P; Teichner A; de Rosa M; Gambacorta A Biochim Biophys Acta; 1983 Aug; 740(3):300-12. PubMed ID: 6347258 [TBL] [Abstract][Full Text] [Related]
5. Reassembly of the peptidyltransferase centre of larger subparticles of rabbit reticulocyte ribosomes from a core-particle and split-protein fraction. Cox RA; Greenwell P Biochem J; 1976 Dec; 160(3):533-46. PubMed ID: 1016238 [TBL] [Abstract][Full Text] [Related]
6. The role of magnesium and potassium ions in the molecular mechanism of ribosome assembly: hydrodynamic, conformational, and thermal stability studies of 16 S RNA from Escherichia coli ribosomes. Allen SH; Wong KP Arch Biochem Biophys; 1986 Aug; 249(1):137-47. PubMed ID: 3527066 [TBL] [Abstract][Full Text] [Related]
7. Correlation of the expansion segments in mammalian rRNA with the fine structure of the 80 S ribosome; a cryoelectron microscopic reconstruction of the rabbit reticulocyte ribosome at 21 A resolution. Dube P; Bacher G; Stark H; Mueller F; Zemlin F; van Heel M; Brimacombe R J Mol Biol; 1998 Jun; 279(2):403-21. PubMed ID: 9642046 [TBL] [Abstract][Full Text] [Related]
8. A spectrophotometric study of the secondary structure of ribonucleic acid based on a method for diminishing single-stranded base-'stacking' without affecting multi-helical structures. Cox RA; Kanagalingam K Biochem J; 1967 Jun; 103(3):749-58. PubMed ID: 4860544 [TBL] [Abstract][Full Text] [Related]
9. Studies of the RNA and protein moieties of the larger subribosomal particle of rabbit reticulocytes. Godwin E; Cox RA; Huvos P Acta Biol Med Ger; 1974; 33(5-6):733-52. PubMed ID: 4219897 [No Abstract] [Full Text] [Related]
10. The circular dichroism of ribosomal ribonucleic acids. Cox RA; Hirst W; Godwin E; Kaiser I Biochem J; 1976 May; 155(2):279-91. PubMed ID: 820335 [TBL] [Abstract][Full Text] [Related]
11. The secondary structure of E. coli ribosomes and ribosomal RNA's: a spectrophotometric approach. Araco A; Belli M; Giorgi C; Onori G Nucleic Acids Res; 1975 Mar; 2(3):373-81. PubMed ID: 1093140 [TBL] [Abstract][Full Text] [Related]
12. Acquisition of native conformation of ribosomal 5S ribonucleic acid from Escherichia coli. Hydrodynamic and spectroscopic studies on the unfolding and refolding of ribonucleic acid. Fox JW; Wong KP Biochemistry; 1982 Apr; 21(9):2096-102. PubMed ID: 6807343 [TBL] [Abstract][Full Text] [Related]
13. Bases defining an ammonium and magnesium ion-dependent tertiary structure within the large subunit ribosomal RNA. Lu M; Draper DE J Mol Biol; 1994 Dec; 244(5):572-85. PubMed ID: 7527467 [TBL] [Abstract][Full Text] [Related]
14. Spectroscopic evidence for the uneven distribution of adenine and uracil residues in ribosomal ribonucleic acid of Drosophila melanogaster and of Plasmodium knowlesi and its possible evolutionary significance. Cox RA; Godwin E; Hastings JR Biochem J; 1976 Jun; 155(3):465-75. PubMed ID: 821475 [TBL] [Abstract][Full Text] [Related]
15. The size and conformation of Artemia (brine-shrimp) ribosomal RNA free in solution. Donceel K; Nieuwenhuysen P; Clauwaert J Biochem J; 1982 Sep; 205(3):495-501. PubMed ID: 7150228 [TBL] [Abstract][Full Text] [Related]
16. Physicochemical characterization of the ribosomal RNA species of the Mollusca. Molecular weight, integrity and secondary-structure features of the RNA of the large and small ribosomal subunits. Cammarano P; Londei P; Mazzei F; Felsani A Biochem J; 1980 Aug; 189(2):313-35. PubMed ID: 7458915 [TBL] [Abstract][Full Text] [Related]
17. An x-ray diffraction study of ribosome structure. Dolgov AD; Ivanov DA; Kapitonova KA; Mokul'skii MA Mol Biol; 1975 Jan; 8(4):410-8. PubMed ID: 1092999 [TBL] [Abstract][Full Text] [Related]
18. Chemical probing of adenine residues within the secondary structure of rabbit 18S ribosomal RNA. Rairkar A; Rubino HM; Lockard RE Biochemistry; 1988 Jan; 27(2):582-92. PubMed ID: 3349049 [TBL] [Abstract][Full Text] [Related]
19. Reassembly of functionally active 50S ribosomal particles from proteins and RNAs of Escherichia coli. Dependency of 50S ribosomal reassembly on 30S subunits. Tsuchiya T; Kanazawa H; Fujimoto H; Mizuno D J Biochem; 1975 Jan; 77(1?):43-54. PubMed ID: 237003 [TBL] [Abstract][Full Text] [Related]
20. Effects of magnesium ions on ribosomes: a fluorescence study. Bonincontro A; Briganti G; Giansanti A; Pedone F; Risuleo G Biochim Biophys Acta; 1993 Jul; 1174(1):27-30. PubMed ID: 7687469 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]