These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 7973958)

  • 21. Instability of the lumbar burst fracture and limitations of transpedicular instrumentation.
    Slosar PJ; Patwardhan AG; Lorenz M; Havey R; Sartori M
    Spine (Phila Pa 1976); 1995 Jul; 20(13):1452-61. PubMed ID: 8623064
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Two in vivo surgical approaches for lumbar corpectomy using allograft and a metallic implant: a controlled clinical and biomechanical study.
    Huang P; Gupta MC; Sarigul-Klijn N; Hazelwood S
    Spine J; 2006; 6(6):648-58. PubMed ID: 17088195
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The inverse effects of load transfer and load sharing on axial compressive stiffness.
    Haher TR; Yeung AW; Ottaviano DM; Merola AA; Caruso SA
    Spine J; 2001; 1(5):324-9; discussion 330. PubMed ID: 14588309
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An investigational study on the healing process of anterior spinal arthrodesis using a bioactive ceramic spacer and the change in load-sharing of spinal instrumentation.
    Takahata M; Kotani Y; Abumi K; Ito M; Takada T; Minami A; Kaneda K
    Spine (Phila Pa 1976); 2005 Apr; 30(8):E195-203. PubMed ID: 15834317
    [TBL] [Abstract][Full Text] [Related]  

  • 25. New anterior instrumentation for the management of thoracolumbar and lumbar scoliosis. Application of the Kaneda two-rod system.
    Kaneda K; Shono Y; Satoh S; Abumi K
    Spine (Phila Pa 1976); 1996 May; 21(10):1250-61; discussion 1261-2. PubMed ID: 8727201
    [TBL] [Abstract][Full Text] [Related]  

  • 26. New rod-plate anterior instrumentation for thoracolumbar/lumbar scoliosis: biomechanical evaluation compared with dual-rod and single-rod with structural interbody support.
    Zhang H; Johnston CE; Pierce WA; Ashman RB; Bronson DG; Haideri NF
    Spine (Phila Pa 1976); 2006 Dec; 31(25):E934-40. PubMed ID: 17139209
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Roentgenographic and biomechanical analysis of lumbar fusions: a canine model.
    Gurr KR; McAfee PC; Warden KE; Shih CM
    J Orthop Res; 1989; 7(6):838-48. PubMed ID: 2795324
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biomechanical analysis of multilevel fixation methods in the lumbar spine.
    Glazer PA; Colliou O; Klisch SM; Bradfore DS; Bueff HU; Lotz JC
    Spine (Phila Pa 1976); 1997 Jan; 22(2):171-82. PubMed ID: 9122797
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hydroxyapatite enhancement of posterior spinal instrumentation fixation.
    Spivak JM; Neuwirth MG; Labiak JJ; Kummer FJ; Ricci JL
    Spine (Phila Pa 1976); 1994 Apr; 19(8):955-64. PubMed ID: 8009355
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cortical bone trajectory for lumbar pedicle screws.
    Santoni BG; Hynes RA; McGilvray KC; Rodriguez-Canessa G; Lyons AS; Henson MA; Womack WJ; Puttlitz CM
    Spine J; 2009 May; 9(5):366-73. PubMed ID: 18790684
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prediction of fatigue screw loosening in anterior spinal fixation using dual energy x-ray absorptiometry.
    Lim TH; An HS; Hasegawa T; McGrady L; Hasanoglu KY; Wilson CR
    Spine (Phila Pa 1976); 1995 Dec; 20(23):2565-8; discussion 2569. PubMed ID: 8610251
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Prediction of thoracic and lumbar vertebral body compressive strength: correlations with bone mineral density and vertebral region.
    Singer K; Edmondston S; Day R; Breidahl P; Price R
    Bone; 1995 Aug; 17(2):167-74. PubMed ID: 8554926
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biomechanical assessment of a PEEK rod system for semi-rigid fixation of lumbar fusion constructs.
    Gornet MF; Chan FW; Coleman JC; Murrell B; Nockels RP; Taylor BA; Lanman TH; Ochoa JA
    J Biomech Eng; 2011 Aug; 133(8):081009. PubMed ID: 21950902
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A prospective cohort analysis of adjacent vertebral body bone mineral density in lumbar surgery patients with or without instrumented posterolateral fusion: a 9- to 12-year follow-up.
    Singh K; An HS; Samartzis D; Nassr A; Provus J; Hickey M; Andersson GB
    Spine (Phila Pa 1976); 2005 Aug; 30(15):1750-5. PubMed ID: 16094277
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of endplate conditions and bone mineral density on the compressive strength of the graft-endplate interface in anterior cervical spine fusion.
    Lim TH; Kwon H; Jeon CH; Kim JG; Sokolowski M; Natarajan R; An HS; Andersson GB
    Spine (Phila Pa 1976); 2001 Apr; 26(8):951-6. PubMed ID: 11317120
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biomechanical analysis of four- versus six-screw constructs for short-segment pedicle screw and rod instrumentation of unstable thoracolumbar fractures.
    Norton RP; Milne EL; Kaimrajh DN; Eismont FJ; Latta LL; Williams SK
    Spine J; 2014 Aug; 14(8):1734-9. PubMed ID: 24462814
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Vertebral body osteopenia associated with posterolateral spine fusion in humans.
    Myers MA; Casciani T; Whitbeck MG; Puzas JE
    Spine (Phila Pa 1976); 1996 Oct; 21(20):2368-71. PubMed ID: 8915073
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stability potential of spinal instrumentations in tumor vertebral body replacement surgery.
    Vahldiek MJ; Panjabi MM
    Spine (Phila Pa 1976); 1998 Mar; 23(5):543-50. PubMed ID: 9530785
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biomechanics of polyaryletherketone rod composites and titanium rods for posterior lumbosacral instrumentation. Presented at the 2010 Joint Spine Section Meeting. Laboratory investigation.
    Bruner HJ; Guan Y; Yoganandan N; Pintar FA; Maiman DJ; Slivka MA
    J Neurosurg Spine; 2010 Dec; 13(6):766-72. PubMed ID: 21121756
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hydroxyapatite-coating of pedicle screws improves resistance against pull-out force in the osteoporotic canine lumbar spine model: a pilot study.
    Hasegawa T; Inufusa A; Imai Y; Mikawa Y; Lim TH; An HS
    Spine J; 2005; 5(3):239-43. PubMed ID: 15863077
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.