These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 7974485)
1. Metabolism of 2-(glutathion-S-yl)hydroquinone and 2,3,5- (triglutathion-S-yl)hydroquinone in the in situ perfused rat kidney: relationship to nephrotoxicity. Hill BA; Davison KL; Dulik DM; Monks TJ; Lau SS Toxicol Appl Pharmacol; 1994 Nov; 129(1):121-32. PubMed ID: 7974485 [TBL] [Abstract][Full Text] [Related]
2. Metabolism and toxicity of 2-bromo-(diglutathion-S-yl)-hydroquinone and 2-bromo-3-(glutathion-S-yl)hydroquinone in the in situ perfused rat kidney. Rivera MI; Hinojosa LM; Hill BA; Lau SS; Monks TJ Drug Metab Dispos; 1994; 22(4):503-10. PubMed ID: 7956722 [TBL] [Abstract][Full Text] [Related]
3. Identification of multi-S-substituted conjugates of hydroquinone by HPLC-coulometric electrode array analysis and mass spectroscopy. Hill BA; Kleiner HE; Ryan EA; Dulik DM; Monks TJ; Lau SS Chem Res Toxicol; 1993; 6(4):459-69. PubMed ID: 8374043 [TBL] [Abstract][Full Text] [Related]
4. Metabolism as a determinant of species susceptibility to 2,3,5-(triglutathion-S-yl)hydroquinone-mediated nephrotoxicity. The role of N-acetylation and N-deacetylation. Lau SS; Kleiner HE; Monks TJ Drug Metab Dispos; 1995 Oct; 23(10):1136-42. PubMed ID: 8654203 [TBL] [Abstract][Full Text] [Related]
5. The effects of 2,3,5-(triglutathion-S-yl)hydroquinone on renal mitochondrial respiratory function in vivo and in vitro: possible role in cytotoxicity. Hill BA; Monks TJ; Lau SS Toxicol Appl Pharmacol; 1992 Dec; 117(2):165-71. PubMed ID: 1361689 [TBL] [Abstract][Full Text] [Related]
6. Inhibition of gamma-glutamyl transpeptidase potentiates the nephrotoxicity of glutathione-conjugated chlorohydroquinones. Mertens JJ; Temmink JH; van Bladeren PJ; Jones TW; Lo HH; Lau SS; Monks TJ Toxicol Appl Pharmacol; 1991 Aug; 110(1):45-60. PubMed ID: 1678558 [TBL] [Abstract][Full Text] [Related]
7. The in vivo disposition of 2-bromo-[14C]hydroquinone and the effect of gamma-glutamyl transpeptidase inhibition. Lau SS; Monks TJ Toxicol Appl Pharmacol; 1990 Mar; 103(1):121-32. PubMed ID: 1969181 [TBL] [Abstract][Full Text] [Related]
8. 2-Bromo-(diglutathion-S-yl)hydroquinone nephrotoxicity: physiological, biochemical, and electrochemical determinants. Monks TJ; Highet RJ; Lau SS Mol Pharmacol; 1988 Oct; 34(4):492-500. PubMed ID: 3173333 [TBL] [Abstract][Full Text] [Related]
9. Nephrotoxicity of 2-bromo-(cystein-S-yl) hydroquinone and 2-bromo-(N-acetyl-L-cystein-S-yl) hydroquinone thioethers. Monks TJ; Jones TW; Hill BA; Lau SS Toxicol Appl Pharmacol; 1991 Nov; 111(2):279-98. PubMed ID: 1957313 [TBL] [Abstract][Full Text] [Related]
10. Glutathione conjugates of tert-butyl-hydroquinone, a metabolite of the urinary tract tumor promoter 3-tert-butyl-hydroxyanisole, are toxic to kidney and bladder. Peters MM; Rivera MI; Jones TW; Monks TJ; Lau SS Cancer Res; 1996 Mar; 56(5):1006-11. PubMed ID: 8640754 [TBL] [Abstract][Full Text] [Related]
11. Species differences in renal gamma-glutamyl transpeptidase activity do not correlate with susceptibility to 2-bromo-(diglutathion-S-yl)-hydroquinone nephrotoxicity. Lau SS; Jones TW; Sioco R; Hill BA; Pinon RK; Monks TJ Toxicology; 1990 Dec; 64(3):291-311. PubMed ID: 1980038 [TBL] [Abstract][Full Text] [Related]
12. Developmental toxicity of bromohydroquinone (BHQ) and BHQ-glutathione conjugates in vivo and in whole embryo culture. Andrews JE; Rogers JM; Ebron-McCoy M; Logsdon TR; Monks TJ; Lau SS Toxicol Appl Pharmacol; 1993 May; 120(1):1-7. PubMed ID: 8099763 [TBL] [Abstract][Full Text] [Related]
13. Cytotoxicity and cell-proliferation induced by the nephrocarcinogen hydroquinone and its nephrotoxic metabolite 2,3,5-(tris-glutathion-S-yl)hydroquinone. Peters MM; Jones TW; Monks TJ; Lau SS Carcinogenesis; 1997 Dec; 18(12):2393-401. PubMed ID: 9450487 [TBL] [Abstract][Full Text] [Related]
14. Quinone thioether-mediated DNA damage, growth arrest, and gadd153 expression in renal proximal tubular epithelial cells. Jeong JK; Stevens JL; Lau SS; Monks TJ Mol Pharmacol; 1996 Sep; 50(3):592-8. PubMed ID: 8794898 [TBL] [Abstract][Full Text] [Related]
15. Differential uptake of isomeric 2-bromohydroquinone-glutathione conjugates into kidney slices. Lau SS; McMenamin MG; Monks TJ Biochem Biophys Res Commun; 1988 Apr; 152(1):223-30. PubMed ID: 2895999 [TBL] [Abstract][Full Text] [Related]
16. Metabolism of 5-(glutathion-S-yl)-alpha-methyldopamine following intracerebroventricular administration to male Sprague-Dawley rats. Miller RT; Lau SS; Monks TJ Chem Res Toxicol; 1995; 8(5):634-41. PubMed ID: 7548745 [TBL] [Abstract][Full Text] [Related]
17. Modulation of quinol/quinone-thioether toxicity by intramolecular detoxication. Monks TJ Drug Metab Rev; 1995; 27(1-2):93-106. PubMed ID: 7641587 [TBL] [Abstract][Full Text] [Related]
18. Sequential oxidation and glutathione addition to 1,4-benzoquinone: correlation of toxicity with increased glutathione substitution. Lau SS; Hill BA; Highet RJ; Monks TJ Mol Pharmacol; 1988 Dec; 34(6):829-36. PubMed ID: 3200250 [TBL] [Abstract][Full Text] [Related]
19. Formation of catechol estrogen glutathione conjugates and gamma-glutamyl transpeptidase-dependent nephrotoxicity of 17beta-estradiol in the golden Syrian hamster. Butterworth M; Lau SS; Monks TJ Carcinogenesis; 1997 Mar; 18(3):561-7. PubMed ID: 9067557 [TBL] [Abstract][Full Text] [Related]
20. Early morphological and biochemical changes during 2-Br-(diglutathion-S-yl)hydroquinone-induced nephrotoxicity. Rivera MI; Jones TW; Lau SS; Monks TJ Toxicol Appl Pharmacol; 1994 Oct; 128(2):239-50. PubMed ID: 7940539 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]