These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 7974506)

  • 41. Novel approach for classifying chemicals according to skin sensitizing potency by non-radioisotopic modification of the local lymph node assay.
    Takeyoshi M; Iida K; Shiraishi K; Hoshuyama S
    J Appl Toxicol; 2005; 25(2):129-34. PubMed ID: 15744759
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Copper hypersensitivity: dermatologic aspects--an overview.
    Hostynek JJ; Maibach HI
    Rev Environ Health; 2003; 18(3):153-83. PubMed ID: 14672513
    [TBL] [Abstract][Full Text] [Related]  

  • 43. An animal model assessment of common dye-induced allergic contact dermatitis.
    Dinardo J; Draelos ZD
    J Cosmet Sci; 2007; 58(3):209-14. PubMed ID: 17598023
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Insights into the quantitative relationship between sensitization and challenge for allergic contact dermatitis reactions.
    Scott AE; Kashon ML; Yucesoy B; Luster MI; Tinkle SS
    Toxicol Appl Pharmacol; 2002 Aug; 183(1):66-70. PubMed ID: 12217643
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Sensitization and development of allergic contact dermatitis caused by a single contact with an electrosurgical grounding plate containing acrylates.
    Borelli S; Nestlé FO
    Dermatology; 1998; 197(4):381-2. PubMed ID: 9873179
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A new protocol and criteria for quantitative determination of sensitization potencies of chemicals by guinea pig maximization test.
    Nakamura A; Momma J; Sekiguchi H; Noda T; Yamano T; Kaniwa M; Kojima S; Tsuda M; Kurokawa Y
    Contact Dermatitis; 1994 Aug; 31(2):72-85. PubMed ID: 7750272
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Structure-activity models for contact sensitization.
    Fedorowicz A; Singh H; Soderholm S; Demchuk E
    Chem Res Toxicol; 2005 Jun; 18(6):954-69. PubMed ID: 15962930
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Guinea pig maximization test for trichloroethylene and its metabolites.
    Tang XJ; Li LY; Huang JX; Deng YY
    Biomed Environ Sci; 2002 Jun; 15(2):113-8. PubMed ID: 12244752
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Lymphocyte surface markers and cytokines are suitable for detection and potency assessment of skin-sensitizing chemicals in an in vitro model of allergic contact dermatitis: the LCSA-ly.
    Frombach J; Sonnenburg A; Krapohl BD; Zuberbier T; Peiser M; Stahlmann R; Schreiner M
    Arch Toxicol; 2018 Apr; 92(4):1495-1505. PubMed ID: 29380012
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Attempts to mimic the repeated open application test in the guinea pig.
    Wahlberg JE; Lidén C
    Contact Dermatitis; 1994 May; 30(5):295-8. PubMed ID: 8088145
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Comparison of the sensitivities of the Buehler test and the guinea pig maximization test for predictive testing of contact allergy.
    Frankild S; Vølund A; Wahlberg JE; Andersen KE
    Acta Derm Venereol; 2000; 80(4):256-62. PubMed ID: 11028857
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The optimization test in the guinea-pig. A method for the predictive evaluation of the contact allergenicity of chemicals.
    Maurer T; Thomann P; Weirich EG; Hess R
    Agents Actions; 1975 May; 5(2):174-9. PubMed ID: 1155304
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Allergenicity and tolerogenicity of amlexanox in the guinea pig.
    Hariya T; Ikezawa Z; Aihara M; Kitamura K; Osawa J; Nakajima H
    Contact Dermatitis; 1994 Jul; 31(1):31-6. PubMed ID: 7924291
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Interactions of contact allergens with dendritic cells: opportunities and challenges for the development of novel approaches to hazard assessment.
    Ryan CA; Gerberick GF; Gildea LA; Hulette BC; Betts CJ; Cumberbatch M; Dearman RJ; Kimber I
    Toxicol Sci; 2005 Nov; 88(1):4-11. PubMed ID: 16014741
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Contact hypersensitivity response to glutaraldehyde in guinea pigs and mice.
    Stern ML; Holsapple MP; McCay JA; Munson AE
    Toxicol Ind Health; 1989 Jan; 5(1):31-43. PubMed ID: 2497558
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Sensitizing capacity of 5,5'-di-tert-butyl-2,2'-dihydorxy-(hydroxymethyl)-dibenzyl ethers in the guinea pig.
    Zimerson E; Bruze M
    Contact Dermatitis; 2000 Aug; 43(2):72-8. PubMed ID: 10945744
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Comparison of sex differences in guinea-pig maximization test for detection of skin-sensitizing potential using OECD recommended positive control sensitizers.
    Nakamura Y; Higaki T; Kato H; Kishida F; Nakatsuka I
    J Toxicol Sci; 1998 May; 23(2):105-11. PubMed ID: 9644650
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Updating the skin sensitization in vitro data assessment paradigm in 2009.
    Basketter DA; Kimber I
    J Appl Toxicol; 2009 Aug; 29(6):545-50. PubMed ID: 19484705
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Use of IL-18 production in a human keratinocyte cell line to discriminate contact sensitizers from irritants and low molecular weight respiratory allergens.
    Corsini E; Mitjans M; Galbiati V; Lucchi L; Galli CL; Marinovich M
    Toxicol In Vitro; 2009 Aug; 23(5):789-96. PubMed ID: 19397996
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The GARD assay for assessment of chemical skin sensitizers.
    Johansson H; Albrekt AS; Borrebaeck CA; Lindstedt M
    Toxicol In Vitro; 2013 Apr; 27(3):1163-9. PubMed ID: 23032079
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.