These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 7974830)

  • 21. One- and two-dimensional SDS-PAGE zymography with quenched fluorogenic substrates provides identification of biological fluid proteases by direct mass spectrometry.
    Thimon V; Belghazi M; Labas V; Dacheux JL; Gatti JL
    Anal Biochem; 2008 Apr; 375(2):382-4. PubMed ID: 18201544
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Proteolytic fingerprinting of complex biological samples using combinatorial libraries of fluorogenic probes.
    Jambunathan K; Watson DS; Kodukula K; Galande AK
    Curr Protoc Protein Sci; 2012 Nov; Chapter 21():21.22.1-21.22.14. PubMed ID: 23151745
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Highly sensitive intramolecularly quenched fluorogenic substrates for renin based on the combination of L-2-amino-3-(7-methoxy-4-coumaryl)propionic acid with 2,4-dinitrophenyl groups at various positions.
    Paschalidou K; Neumann U; Gerhartz B; Tzougraki C
    Biochem J; 2004 Sep; 382(Pt 3):1031-8. PubMed ID: 15233625
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Papa's got a brand new tag: advances in identification of proteases and their substrates.
    Marnett AB; Craik CS
    Trends Biotechnol; 2005 Feb; 23(2):59-64. PubMed ID: 15661339
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Emerging challenges in the design of selective substrates, inhibitors and activity-based probes for indistinguishable proteases.
    Kasperkiewicz P; Poreba M; Groborz K; Drag M
    FEBS J; 2017 May; 284(10):1518-1539. PubMed ID: 28052575
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transition-metal complexes as enzyme-like reagents for protein cleavage: complex cis-[Pt(en)(H2O)2]2+ as a new methionine-specific protease.
    Milović NM; Dutca LM; Kostić NM
    Chemistry; 2003 Oct; 9(20):5097-106. PubMed ID: 14562327
    [TBL] [Abstract][Full Text] [Related]  

  • 27. N- and C-terminal degradomics: new approaches to reveal biological roles for plant proteases from substrate identification.
    Huesgen PF; Overall CM
    Physiol Plant; 2012 May; 145(1):5-17. PubMed ID: 22023699
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Detection of Protease Activity by Fluorescent Peptide Zymography.
    Deshmukh AA; Weist JL; Leight JL
    J Vis Exp; 2019 Jan; (143):. PubMed ID: 30735202
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Protease proteomics: revealing protease in vivo functions using systems biology approaches.
    Doucet A; Overall CM
    Mol Aspects Med; 2008 Oct; 29(5):339-58. PubMed ID: 18571712
    [TBL] [Abstract][Full Text] [Related]  

  • 30. "Reverse degradomics", monitoring of proteolytic trimming by multi-CE and confocal detection of fluorescent substrates and reaction products.
    Piccard H; Hu J; Fiten P; Proost P; Martens E; Van den Steen PE; Van Damme J; Opdenakker G
    Electrophoresis; 2009 Jul; 30(13):2366-77. PubMed ID: 19621364
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [A method of screening artificial substrates for proteolytic enzymes].
    Nedospasov AA; Potaman VN; Rodina EV
    Bioorg Khim; 1989 Apr; 15(4):444-52. PubMed ID: 2665752
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mixture-based peptide libraries for identifying protease cleavage motifs.
    Turk BE
    Methods Mol Biol; 2009; 539():79-91. PubMed ID: 19377969
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quantitative measurement of proteolytic rates with quantum dot-peptide substrate conjugates and Förster resonance energy transfer.
    Wu M; Petryayeva E; Medintz IL; Algar WR
    Methods Mol Biol; 2014; 1199():215-39. PubMed ID: 25103812
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Defining the extended substrate specificity of kallikrein 1-related peptidases.
    Borgoño CA; Gavigan JA; Alves J; Bowles B; Harris JL; Sotiropoulou G; Diamandis EP
    Biol Chem; 2007 Nov; 388(11):1215-25. PubMed ID: 17976015
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Granule proteases of hematopoietic cells, a family of versatile inflammatory mediators - an update on their cleavage specificity, in vivo substrates, and evolution.
    Hellman L; Thorpe M
    Biol Chem; 2014 Jan; 395(1):15-49. PubMed ID: 23969467
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A broad-spectrum fluorescence-based peptide library for the rapid identification of protease substrates.
    Thomas DA; Francis P; Smith C; Ratcliffe S; Ede NJ; Kay C; Wayne G; Martin SL; Moore K; Amour A; Hooper NM
    Proteomics; 2006 Apr; 6(7):2112-20. PubMed ID: 16479534
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A protease inhibitor discovery method using fluorescence correlation spectroscopy with position-specific labeled protein substrates.
    Nakata H; Ohtsuki T; Sisido M
    Anal Biochem; 2009 Jul; 390(2):121-5. PubMed ID: 19394304
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Proteolytically degradable hydrogels with a fluorogenic substrate for studies of cellular proteolytic activity and migration.
    Lee SH; Miller JS; Moon JJ; West JL
    Biotechnol Prog; 2005; 21(6):1736-41. PubMed ID: 16321059
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cleavage specificities of the brother and sister proteases Lys-C and Lys-N.
    Raijmakers R; Neerincx P; Mohammed S; Heck AJ
    Chem Commun (Camb); 2010 Dec; 46(46):8827-9. PubMed ID: 20953479
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Proteochemometrics mapping of the interaction space for retroviral proteases and their substrates.
    Kontijevskis A; Petrovska R; Yahorava S; Komorowski J; Wikberg JE
    Bioorg Med Chem; 2009 Jul; 17(14):5229-37. PubMed ID: 19539482
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.