These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 7975288)

  • 1. Two simple psychophysical methods for determining the optical modulation transfer function of the human eye.
    Rovamo J; Mustonen J; Näsänen R
    Vision Res; 1994 Oct; 34(19):2493-502. PubMed ID: 7975288
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modelling contrast sensitivity as a function of retinal illuminance and grating area.
    Rovamo J; Mustonen J; Näsänen R
    Vision Res; 1994 May; 34(10):1301-14. PubMed ID: 8023438
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Foveal optical modulation transfer function of the human eye at various pupil sizes.
    Rovamo J; Kukkonen H; Mustonen J
    J Opt Soc Am A Opt Image Sci Vis; 1998 Sep; 15(9):2504-13. PubMed ID: 9729862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modelling the dependence of contrast sensitivity on grating area and spatial frequency.
    Rovamo J; Luntinen O; Näsänen R
    Vision Res; 1993 Dec; 33(18):2773-88. PubMed ID: 8296472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial integration of compound gratings with various numbers of orientation components.
    Rovamo J; Ukkonen O; Thompson C; Näsänen R
    Invest Ophthalmol Vis Sci; 1994 Apr; 35(5):2611-9. PubMed ID: 8163349
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new psychophysical method for determining the photopic spectral-luminosity function of the human eye.
    Rovamo J; Koljonen T; Näsänen R
    Vision Res; 1996 Sep; 36(17):2675-80. PubMed ID: 8917754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of aberrations, diffraction, and quantal fluctuations determine the impact of pupil size on visual quality.
    Xu R; Wang H; Thibos LN; Bradley A
    J Opt Soc Am A Opt Image Sci Vis; 2017 Apr; 34(4):481-492. PubMed ID: 28375317
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural modulation transfer function of the human visual system at various eccentricities.
    Rovamo J; Mustonen J; Näsänen R
    Vision Res; 1995 Mar; 35(6):767-74. PubMed ID: 7740768
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial neural modulation transfer function of human foveal visual system for equiluminous chromatic gratings.
    Rovamo JM; Kankaanpää MI; Hallikainen J
    Vision Res; 2001 Jun; 41(13):1659-67. PubMed ID: 11348648
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the calculation of optical performance factors from vertebrate spatial contrast sensitivity.
    Jarvis JR; Wathes CM
    Vision Res; 2007 Aug; 47(17):2259-71. PubMed ID: 17588633
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modelling the increase of contrast sensitivity with grating area and exposure time.
    Luntinen O; Rovamo J; Näsänen R
    Vision Res; 1995 Aug; 35(16):2339-46. PubMed ID: 7571469
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relative contributions of optical and neural limitations to human contrast sensitivity at different luminance levels.
    Losada MA; Navarro R; Santamaría J
    Vision Res; 1993 Nov; 33(16):2321-36. PubMed ID: 8273296
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modelling spatial contrast sensitivity functions for chromatic and luminance-modulated gratings.
    Rovamo JM; Kankaanpää MI; Kukkonen H
    Vision Res; 1999 Jul; 39(14):2387-98. PubMed ID: 10367059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recognition of band-pass filtered hand-written numerals in foveal and peripheral vision.
    Näsänen R; O'Leary C
    Vision Res; 1998 Dec; 38(23):3691-701. PubMed ID: 9893800
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The physical limits of grating visibility.
    Banks MS; Geisler WS; Bennett PJ
    Vision Res; 1987; 27(11):1915-24. PubMed ID: 3447346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of grating area and spatial frequency on contrast sensitivity as a function of light level.
    Mustonen J; Rovamo J; Näsänen R
    Vision Res; 1993 Oct; 33(15):2065-72. PubMed ID: 8266648
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of location and orientation uncertainty on r.m.s. contrast sensitivity with and without spatial noise in peripheral and foveal vision.
    Ukkonen O; Rovamo J; Näsänen R
    Optom Vis Sci; 1995 Jun; 72(6):387-95. PubMed ID: 7566901
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of luminance and exposure time on contrast sensitivity in spatial noise.
    Rovamo J; Kukkonen H; Tiippana K; Näsänen R
    Vision Res; 1993 May; 33(8):1123-9. PubMed ID: 8506651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of spatial aliasing and contrast sensitivity in peripheral vision.
    Thibos LN; Still DL; Bradley A
    Vision Res; 1996 Jan; 36(2):249-58. PubMed ID: 8594823
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical modulation transfer and contrast sensitivity with decentered small pupils in the human eye.
    Artal P; Marcos S; Iglesias I; Green DG
    Vision Res; 1996 Nov; 36(22):3575-86. PubMed ID: 8976989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.